
1 Introduction 

Point clouds of interior spaces are useful for many 

applications, such as automatic generation of indoor models [9] 

and object recognition [7]. The focus for such applications is 

mainly on identification of the boundaries of space or the 

objects inside it, instead of directly on the empty, pointless and 

usable space itself. Identification of empty space, also called 

free space [6], can serve a multitude of purposes. It can be used 

for (3D) pathfinding, estimating building volume and available 

storage space, and for fitting objects through narrow spaces. 

Two-dimensional pathfinding purposes require at least the 

availability of a model with navigable paths, which could be 

constructed from a 2D floor plan. However, 3D pathfinding 

purposes require the availability of a 3D explorative 

representation of empty, navigable space [5, 13]. Furthermore, 

this empty space needs to be structured; topological relations 

are needed for pathfinding algorithms to navigate through the 

identified and connected empty space. One option to do so is 

by creating an octree data structure, which has been used to 

efficiently identify and organize empty space before [6]. 

 

 

Octrees are also a common approach to segment and structure 

point clouds [10, 15, 16]. They are used by applications such as 

Potree [11], which visualises point clouds by making use of the 

octree structure to select visible nodes from a certain viewpoint. 

Octrees are based on the recursive and non-uniform subdivision 

of space. They provide an efficient way of indexing the point 

cloud and performing neighbour finding operations [8], and 

result in a hierarchical structure. Octrees can be constructed 

such that, as long as an octant contains a certain number of 

points, the octant is again split into eight equally sized octants. 

This process can be continued either until all octants contain a 

maximum specified number of points, or until a predefined 

resolution of space segmentation is reached. From such an 

octree, the empty space can be efficiently derived.  

In this paper a workflow is presented that segments an indoor 

point cloud by generating a linear octree, and subsequently uses 

this octree to derive the structured and connected empty space. 

The performance and scalability of the workflow is analysed, 

and a 3D pathfinding algorithm is used to present a use case for 

the identification of structured and connected empty space. 

 

Using a linear octree to identify empty space in indoor point clouds for 

3D pathfinding 

 Tom Broersen 

Delft University of 

Technology 

Julianalaan 134 

Delft, the Netherlands 

t.broersen-1@ 

student.tudelft.nl 

Florian W. Fichtner  

Delft University of 

Technology 

Julianalaan 134 

Delft, the Netherlands 

f.w.fichtner@ 

student.tudelft.nl 

Erik J. Heeres 

Delft University of 

Technology 

Julianalaan 134 

Delft, the Netherlands 

e.j.heeres@ 

student.tudelft.nl 

Ivo de Liefde 

Delft University of 

Technology 

Julianalaan 134 

Delft, the Netherlands 

i.deliefde@ 

student.tudelft.nl 

 
Olivier B. P. M. Rodenberg 

Delft University of Technology 

Julianalaan 134 

Delft, the Netherlands 

o.b.p.m.rodenberg@ 

student.tudelft.nl 

Edward Verbree 

Delft University of Technology 

Julianalaan 134 

Delft, the Netherlands 

e.verbree@tudelft.nl 

Robert Voûte 

Delft University of Technology 

/ CGI 

Julianalaan 134 

Delft, the Netherlands 

r.voute@tudelft.nl 
 

   

 

Abstract 

Indoor pathfinding and routing need fast ways to define connected navigable space, which represents usable paths. This is important because 

the interior space in buildings changes and often does not follow the architectural design. A workflow is presented that uses a linear octree to 
segment the space contained in an indoor point cloud, and subsequently derives the structured and connected empty space. Binary locational 

codes are efficiently generated for every point, which implicitly contain the linear octree structure. The workflow successfully generated the 

linear octree and derived the empty space. A shortest path algorithm showed the potential of using a linear octree for space segmentation in 
indoor point clouds, and deriving the structured and connected empty space. The workflow is fast and automated, enriches point clouds with 

a structure that can be understood by computers and retains all detail of the raw data set. 

 
Keywords: point cloud, linear octree, connected empty space, pathfinding, locational codes, indoor 

 

 
 

 



AGILE 2016 – Helsinki, June 14-17, 2016 

 

 

2 Methodology 

The three dimensional space contained by the point cloud is 

segmented and structured using a linear octree based on [2]. 

Figure 1 shows the method’s workflow. 

 

Figure 1: Workflow of presented method. 

 
 

 

2.1 Translation and scaling 

To allow for efficient octree generation, the native coordinate 

system of the point cloud needs to be converted to a local 

Cartesian coordinate system ranging between 0 at the origin, to 

2nmax at the axis extremes. The parameter nmax gives the 

desired number of levels in the octree, the octree depth, which 

depends on the required resolution of the space segmentation. 

First, a translation is applied which sets the point of origin to 

(0, 0, 0). The offset of the point cloud’s bounding box is 

determined with respect to the desired origin point (0, 0, 0). 

Every point in the point cloud is then corrected for this offset. 

Secondly, the point cloud is scaled to set the axis extremes to 

2nmax. A ratio is calculated between every dimension of the 

bounding box and 2nmax. The largest of these ratios is taken as 

scaling factor, which is applied to every point. To create a cubic 

bounding box, empty space is added to the end of any axis with 

an axis extreme below 2nmax. 

 

 

Figure 2: Two dimensional example of octree enumeration 

and locational codes. Binary numbers are converted to decimal 

integers for readability. 

 
 

 

2.2 Linear octree generation 

Every black leaf node in the octree is assigned a unique key, 

and the octree structure can be derived from these unique keys. 

These keys are locational codes [1, 2], which are based on the 

following principle (Figure 2):   

 

Imagine a cube that is split by three split planes located in the 

middle of, and perpendicular to, its (x, y, z) axes. This split 

action results in the formation of eight smaller equally sized 

octants. It is then possible to encode with three bits in which of 

these octants a certain point is located. Along every (x, y, z) 

axis of the cube, this point can be at one of the two sides of the 

corresponding split plane, which can be indicated by either the 

digit 0 (false) or 1 (true). It is thus possible to specify for this 

point in which octant it is located by a combination of three 

bits; x [0 or 1], y [0 or 1], and z [0 or 1]. 

 

This principle is used to generate a locational code for every 

point in the point cloud: 

 

1. By truncating the point’s coordinates to integers, the 

point is snapped to the minimum vertex of the black leaf 

node inside which it is located [1]. This is always correct 

due to the translation and scaling applied to the point 

cloud. 

2. The truncated coordinates of the point are converted into 

separate binary numbers for the (x, y, z) dimensions. 

The combined digits on the i-th position in these three 

binary numbers give the location of the point in its 

containing octant at depth i in the octree, which follows 

from the principle above. 

3. The three binary numbers are then iterated through, 

from left to right, thereby interleaving the digits to form 

the locational code. The iteration continues until the 

desired octree depth nmax is reached. Any binary 

number shorter than nmax, is simply lengthened by 

concatenating the digit 0 until the nmax length is 

reached.  

 

By following this procedure for every point in the point 

cloud, a set of locational codes is obtained. The set of the 

octree’s black leaf nodes can be formed by taking all unique 

locational codes of the points, thus removing the duplicate 

locational codes from the set of points. The entire octree 

structure is implicitly stored in the set of black leaf nodes, and 

can be reconstructed from it. The method ensures that there are 

no black leaf nodes in the octree at levels below the maximum 

octree depth nmax, thus the octree always reaches maximum 

resolution around points.  

 

2.3 Identification of empty space 

The linear octree is implicitly stored in the set of black leaf 

nodes, but the white leaf nodes, which contain the empty space, 

still have to be derived. Unlike black leaf nodes, white leaf 

nodes can occur in every level of the octree. To identify all 

white nodes at a certain level n in the octree, the following steps 

are taken: 
 

1. Generate the set of grey nodes at level n-1 

2. Generate the set of black nodes at level n 

3. Concatenate to all locational codes of the grey nodes 

at level n-1, one by one the eight 3-bit length binary 

numbers of the nodes formed by division of this grey 

node, thus generating the set of all potential white 

and black nodes at level n.  

4. Test for the entire set of potential white and black 

nodes at level n, whether these nodes are present in 

the set of black nodes at level n. If they are not 



AGILE 2016 – Helsinki, June 14-17, 2016 

 

 

present in this set, then this means the node is a white 

leaf node, and thus represents empty space. 

 

These steps have to be performed for every level in the octree. 

Generating the sets of grey and black nodes at a certain level is 

done by removing [(nmax-n) * 3] digits from the locational 

code of every black leaf node until the required level is reached. 

Duplicates are removed from the resulting sets. To find all 

white leaf nodes at level 0, simply compare the set of black 

nodes at level 0 to the set of eight 3-bit length binary numbers 

of the nodes formed by division of the root node.  

 

Figure 3: Visualization of structured and connected empty 

space (grey cubes) in a vertical slice through the point cloud. 

The points (black) represent the building’s walls, floor, ceiling 

and furniture. 

 
2.4 Determining node geometry and minimum 

vertex 

All octants in this octree are cubic, thus all twelve edges of a 

node are equal in length. This length is dependent on the level 

of the node in the octree, and is halved for every deeper level 

in the tree. Since the minimum edge length of the leaf nodes 

equals 1, the size of the nodes at level n is equal to 2nmax-n. 

To find any node’s minimum vertex, or point of origin, the 

node’s locational code is converted back to local coordinates.   

This is done by iterating over the digits in the locational code 

from right to left, and accordingly recreating the original 

separate (x, y, z) binary numbers. At the end of the iteration, 

these binary numbers can be converted to decimal numbers 

obtain the (x, y, z) coordinates of the minimum vertex. 

 

 

3 Implementation 

The workflow was implemented using Python and 

PostgreSQL. The ZEB1 hand-held laser-scanner [3] was used 

to obtain an indoor point cloud of a building of approximately 

13 by 20 m. The implementation was tested on a HP laptop 

running Windows 10 with Intel(R) Core(™) i7-4700MQ CPU 

at 2.40 GHz and 8.00 GB RAM.  

The A* algorithm is used to compute the shortest path 

between two points in the octree, which serves as a use case for 

the structured and connected empty space. Neighbors are 

identified after [14], thereby utilizing the hierarchical structure 

of the linear octree. Nodes are regarded neighbors if they share 

a common face. 

The implemented workflow successfully generated the linear 

octree, and derived the empty space from it. A vertical slice 

through the point cloud and derived empty space is shown in 

Figure 3. Due to the octree structure, the empty space is 

structured into large cubes in the center of the building, and 

smaller cubes near points. The structured and connected empty 

space was successfully used by the pathfinding algorithm to 

compute the shortest route between two points located in the 

empty space (Figure 4). 

 

  

4 Performance and Scalability 

The performance and scalability of the proposed workflow was 

evaluated for different octree depths (Table 1), and for different 

point cloud sizes (Table 2). Different point cloud sizes were 

obtained by changing point density. To focus only on the 

proposed workflow, the time spent writing points to 

PostgreSQL database was not taken into account. 

The total workflow runtime required for octrees with 

maximum depth of 6, 7 and 8 levels is shown for a point cloud 

of 2.3 million points (Table 1). Increasing the octree depth from 

6 to 7 levels, thus essentially doubling the resolution of space 

segmentation, causes only an 18% increase in total runtime. 

Increasing the octree depth from 6 to 8 levels, quadrupling the 

resolution of space segmentation, causes an increase in total 

runtime of only 36%. This is caused by the fact that the same 

number of points are processed, while the number of iterations 

needed to form the locational code of the points increases from 

6 to 7 or 8 only. Thus the time spent on calculations per point  

increases only by a small amount. Similarly, the number of 

octree levels processed for identification of white nodes, or 

empty space, increases from 6 to 7 or 8 only. In essence this 

indicates that the implemented workflow scales well with 

increasing space segmentation resolution. 

 

 

Table 1: Workflow runtime for a point cloud of 2.3 million 

points with different octree depths.  

Octree depth in levels 6 7 8 

Workflow runtime in 

seconds 

11 13 15 

Workflow runtime relative to 

6 levels in percent 

100 118 136 

 

 

 

Table 2: Workflow runtime for a point cloud with octree 

depth of 8 levels, for different point cloud sizes.  

Point cloud size in million 

points 

2.3 4.6 9.2 

Workflow runtime in 

seconds 

15 32 54 

Workflow runtime relative 

to 2.3 million points in 

percent 

100 213 360 

 

 

 



AGILE 2016 – Helsinki, June 14-17, 2016 

 

 

The total workflow runtime required for differently sized 

point clouds, is shown for a constant octree depth of 8 levels 

(Table 2). An increase in the number of points has a 

pronounced impact on performance. Doubling the point cloud 

size increased total runtime by 213%, while quadrupling the 

point cloud size increased total runtime by 360%. These 

increases in runtime are caused by the fact that there are simply 

many more points, and thus many more calculations to perform 

to obtain the locational codes. However, the derivation of white 

nodes scales well with increasing point cloud size, and runtime 

for a point cloud of 9.2 million points is still well below one 

minute. Using a compiled language such as C++ may further 

speed up the workflow. 

 

 

5 Conclusion 

A workflow was presented that uses a linear octree to segment 

the space contained in an indoor point cloud, and subsequently 

derives the structured and connected empty space. The 

workflow was implemented using Python and PostgreSQL, and 

successfully generated the linear octree and derived the empty 

space.  

The performance and scalability of the workflow were 

analysed for different octree depths, or resolution of space 

segmentation, and for different point cloud sizes. The workflow 

was found to scale well, especially for increasing octree depth. 

The time required for the workflow to generate a linear octree 

and derive the empty space for a point cloud of 9.2 million 

points, and octree depth of 8 levels, is only 54 seconds. Thus, 

the presented methodology performs and scales well, and can 

especially be applicable if high resolution space segmentation 

is required. The procedure is fast and automated, enriches point 

clouds with a structure that can be understood by computers, 

while keeping all detail of the raw data set. 

  A 3D pathfinding algorithm was successfully used to compute 

the shortest path between two points. This use case indicates 

the potential of using a linear octree for space segmentation in 

indoor point clouds, and deriving the structured and connected 

empty space. The high performance of the workflow is 

important for indoor pathfinding in a changing environment. 

 

Figure 4: Visualization of a shortest route (grey cubes) 

through the structured and connected empty space in the point 

cloud. 

 

6 Future research 

Future research could aim at connecting the presented method 

to the “outdoor” coordinate system (world coordinates), 

thereby connecting indoor and outdoor pathfinding. The 

workflow could be adapted for the real time identification of 

empty space with an updateable structure. Furthermore, the 

derivation of empty space could be beneficial for noise filtering 

in point clouds through the identification of isolated points in 

empty space. The locational codes could also be used to 

improve the database performance [4, 12]. The current 

implementation has been validated using visual inspection. 

However, future research could create metrics for validating the 

results more thoroughly.  

   Authors of this paper are currently working on identifying the 

impact of octree depth and connectivity on the performance of 

pathfinding using an octree structure. Furthermore, the octree 

data structure is being used to subdivide the 3D empty space 

for pathfinding across multiple floor levels.  

 

 

References 

[1] Frisken, S. F., and Perry, R. N. Simple and efficient 

traversal methods for quadtrees and octrees. Journal of 

Graphics Tools, 7(3): 1-11, 2002. 

 

[2] Gargantini, I. Linear octrees for fast processing of three-

dimensional objects. Computer graphics and Image 

processing, 20(4): 365-374, 1982. 

 

[3] Geoslam. ZEB1 hand-held laser-scanner. URL: 

http://geoslam.com/products/#zeb1, 2016. 

 

[4] Laurini, R., Thompson, D. Fundamentals of spatial 

information systems. Vol. 37. Academic press, 1992. 

 

[5] Nekiber, S. Rich point clouds in virtual globes – A new 

paradigm in city modeling? Computers, Environment and 

Urban Systems, 34(6): 508–517, 2010. 

 

[6] Payeur, P. A computational technique for free space 

localization in 3-D multiresolution probabilistic 

environment models. IEEE Transactions on 

Instrumentation and Measurement, 55(5):1734-1746, 

2006. 

 

[7] Rusu, R., Marton, Z., Blodow, N., Holzbach, A., and 

Beetz, M. Model-based and learned semantic object 

labelling in 3D point cloud maps of kitchen environments. 

In IEEE/RSJ International Conference on Intelligent 

Robots and Systems, 3601–3608, 2009. 

 

[8] Samet, H. Neighbor finding in images represented by 

octrees. Computer Vision, Graphics, and Image 

Processing, 46(3):367–386, 1989. 

 

[9] Sanchez, V. and Zakhor, A. Planar 3d modeling of 

building interiors from point cloud data. In 19th IEEE 

International Conference on Image Processing (ICIP), 

pages 1777–1780, 2012. 

http://www.sciencedirect.com/science/journal/01989715/34/6


AGILE 2016 – Helsinki, June 14-17, 2016 

 

 

[10] Schön, B., Mosa, A. S. M., Laefer, D. F., and Bertolotto, 

M. Octree-based indexing for 3D point clouds within an 

oracle spatial DBMS. Computers & Geosciences, 51:430–

438, 2013. 

 

[11] Schütz, M. Potree. URL: http://potree.org, 2016. 

 

[12] Van Oosterom, P. Spatial Access Methods. In Geogra-

phical Information Systems Principles, Technical Issues, 

Management Issues, and Applications (edited by Longley, 

Goodchild, Maguire en Rhind), Wiley pages 385-400 

(vol.1), 1999 

 

[13] Verbree, E. & Oosterom, P.J.M. van. Explorative point 

clouds maps for immediate use and analysis. Presentation 

at European LiDAR Mapping FORUM (ELMF), 

Amsterdam, The Netherlands, December 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[14] Vörös, J. A strategy for repetitive neighbor finding in 

octree representations. Image & Vision Computing, 

18(14): 1085–1091, 2000. 

 

[15] Wang, M. and Tseng, Y. Incremental segmentation of 

lidar point clouds with an octree-structured voxel space. 

The Photogrammetric Record, 26(133): 32–57, 2011. 

 

[16] Zhou, K., Gong, M., Huang, X., and Guo, B. Data-Parallel 

octrees for surface reconstruction. IEEE Trans. 

Visualization & Computer Graphics, 17(5): 669–681, 

2011. 

 


