
 

1 Introduction 

Field observations are traditionally used to study the timing of 

annual recurring animal and plant life cycle events that are 

influenced by seasonal and inter-annual variations in weather 

and climate [1]. The science that studies these timings is 

called phenology [2, 3]. In recent years, progress in 

information and communication technologies and the 

miniaturization and popularization of location-aware devices 

(e.g. smartphones) have revolutionized the collection of large 

amounts of volunteered geographic information (VGI) in 

phenology [4, 5]. 

Phenological VGI is a source of low cost, timely and 

detailed data because volunteers operate at unprecedented 

spatio-temporal scales [6]. It opens, therefore, the door to 

analysis of synchronicity in phenological events. 

Understanding the causes of synchronicity in the timing of 

phenological events is critical because, synchronicity is 

strongly controlled by climate conditions in regions with a 

marked seasonality [7]. Synchronicity varies from year to 

year, especially for spring phenological events such as 

flowering [8-10]. The level of phenological synchronicity has 

ecological, social and economic consequences [11]. 

The quality of VGI, and in particular its consistency, has 

often been a concern for phenological studies [12-16]. The 

phenological VGI is considered inconsistent when the 

reported date of occurrence is implausible with regard to its 

geographic location and associated environmental conditions 

[17]. Inconsistent observations might be caused by different 

levels of expertise on recognizing target species and specific 

phenological event among volunteers [18]. Moreover, 

volunteers might do observations at locations that have 

environmental conditions that are not representative. This 

might negatively influence the analysis of factors that explain 
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Abstract 

Analyzing synchronicity in the timing of annual recurring animal and plant life cycle events is important to analyse the impact of global 

change on our planet. The location and timing of these events is recorded by thousands of volunteers in the context of phenological 

networks. Most of the current workflows analyse synchronicity without checking consistency of such volunteered geographic information. 

Here, we describe a workflow to analyse synchronicity in volunteered observations while accounting for possible inconsistencies in the 

data. The workflow uses the date and geographic locations of the observations to 1) define temperature-driven constraints; 2) spatially link 

the observations; 3) identify inconsistent observations;  and 4) model species-specific synchronicity. This workflow was tested using 

flowering observations of horse chestnut (Aesculus hippocastanum) in the Netherlands for the period 2003-2015. We found inconsistent 

observations each year but a sensitivity analysis of the temporal trends in flowering did not find significant differences between trends 

estimated from the original observations or only the consistent ones. This means that the observations already have a high degree of 

consistency. We found a negative correlation between the measure of synchronicity in flowering onset and the cumulative temperatures of 

February, March and April (R = 0.77).  In years with warm springs, the flowering tends to be more geographically synchronous than years 

with cold springs. These results show that the proposed workflow can effectively be used to analyse volunteered geographic information in 

phenology. 
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the variation in the timing of phenological events [19, 20]. 

Yet, there is an absence of a generic workflow to analyse 

synchronicity in phenological VGI while accounting for 

possible inconsistencies in the observations. Most of the 

current workflows analyse either synchronicity or 

inconsistency but not both. Moreover, consistency checks are 

often based on purely statistical methods that look for 

deviations and derivatives from an expected probability 

distribution. This is impractical as probability distributions are 

often estimated from unchecked phenological VGI. When 

analysing phenological VGI synchronicity we need to 

determine whether the variability in the timing of 

phenological event is caused by annual climatic variations or 

uncertainties introduced by the observer (due to lack of 

expertise, frequency of doing the observations, application of 

the methodology, etc.). 

 

 

2 Material and methods 

2.1 Data: VPOs and temperature 

Volunteered phenological observations (VPOs) collected in 

the framework of the Dutch phenological network 

Natuurkalender1 (Nature’s Calendar) were used to illustrate 

the proposed workflow. The Natuurkalender is a VGI-based 

initiative that was established in 2001 to monitor a wide range 

of species and phenological events. We used observations 

from one spring flowering species: horse chestnut (Aesculus 

hippocastanum). This species is popular in terms of number of 

observations and spatial coverage: the Natuurkalender 

database has a total of 915 flowering observations covering 

the period 2003 to 2015. In addition to flowering dates (later 

transformed into day of the year or DOY), the database 

contains a unique ID, and the location (in Dutch National 

Coordinate System, EPSG: 28992) of each observation. 

In temperate regions like the Netherlands, temperature is the 

main driver of phenological events in plants [21, 22]. Thus, 

daily temperature data were obtained from the Royal 

Netherlands Meteorological Institute (KNMI2). These data 

were provided as continuous grids of 1 km by 1 km of daily 

average temperature. These grids were produced by 

interpolating daily average records collected by about 150 

meteorological stations. The interpolation method was Inverse 

Distance Weighted interpolation with a power parameter of 

2.0, a block size of 20 km and a search radius of 110 km [23]. 

 

 

2.2 The workflow 

The proposed workflow assessed the synchronicity of the 

flowering onset through six major steps. Considering the 

DOYs, VPOs locations and gridded datasets of daily 

temperatures as input, we: (1) generated cumulative variables, 

(2) defined temperature-driven constraints, (3) linked VPOs 

locations, (4) identified inconsistent observations, (5) 

analysed the impact of inconsistent observations and (6) 

modelled species-specific synchronicity. 

                                                                 

1 www.natuurkalender.nl 

2 www.knmi.nl 

The accumulation of temperature is the most correlated 

variable with flowering phenology in spring [24-26]. In the 

first step of the workflow, cumulative temperatures (CT) at 

observations locations were calculated. For this, we added up 

daily average temperatures above zero degrees Celsius from 

the first of January of the year of the observation until the 

reported date of flowering onset. The correlation between CTs 

and DOYs of VPOs were calculated to investigate how the 

accumulation of temperature could explain the timing of 

flowering onset in each year.  

Regression is an effective method to model phenological 

events using CT [21, 27]. In our study, the difference in CT 

(∆CT) was used to model the difference in DOY of flowering 

onset (∆DOY) in the second step of the workflow. In particular, 

in each year, the ∆DOY and ∆CT of all VPO pairs were 

calculated and modelled using linear regression. The 

estimated regression parameters were used to define a 

temperature-driven constraint. Given ∆CT at the location of 

each two VPOs, their corresponding ∆DOY should not exceed a 

number of days (∆Max) from the estimated ∆DOY, otherwise, 

the two VPOs refute the consistency of each other. 

 In the third step, yearly VPOs locations were used to link 

the nearby observations. Environmental parameters other than 

temperature (e.g., genetic variation between individuals and 

variation in precipitation, soil moisture and 

evapotranspiration) often do not significantly vary in nearby 

VPOs locations. VPOs closer than a threshold distance were 

linked by constructing a spatial graph in which VPO locations 

were located at the nodes. More specifically, the yearly graphs 

were made through a triangulation of VPO locations in which 

all links longer than a threshold distance were pruned. The 

Delaunay triangulation was used for this as it is 

computationally efficient and avoids a large number of long 

links [28]. The pruning distance can differ from year to year 

because the distribution and density of VPOs vary over the 

study area. To objectively ensure that yearly spatial graphs 

have a high level of connectivity, which is a prerequisite to 

identifying inconsistent observations. We selected pruning 

distances with only 5% or less isolated nodes (i.e. nodes with 

no link). The pruning distances, varying between 10km to 

50km in steps of 10 kilometres, were checked for such level 

of connectivity. In each year, the smallest distance that 

resulted in the highly linked VPOs was selected as the pruning 

distance. 

In the fourth step, the yearly linked VPOs were checked for 

consistency using the defined temperature-driven constraint 

defined the second step. Given ∆CT of linked VPOs, their 

∆DOY were first estimated and then compared with their 

corresponding ∆DOY. For ∆Max values varying from 1 day to 1 

month nodes refuted by more than one other linked nodes 

were highlighted as inconsistent in the yearly graphs. The 

percentages of yearly inconsistent observations were 

calculated and they represented using heat map, a graphical 

representation of data where the individual values contained 

in a matrix are represented as colors [29]. The smallest ∆Max 

for which the percentage was 5% or less (acceptable for most 

users of VPOs) was introduced as the measure of the 

synchronicity of flowering onset in the year.  

In the fifth step, the impact of inconsistent observations on 

the temporal trend analysis of flowering onset was explored 

using an analysis of covariance or ANCOVA [30]. This 
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(sensitivity) analysis evaluated whether the temporal trend in 

flowering onset differs significantly with and without 

inconsistent observations. This is done by comparing 

regression lines fitted to datasets cleaned considering various 

∆Max and the original datasets. The ∆Max for which ANCOVA 

reported a significant difference between the lines was 

reported to potential user of VPOs. 

According to literature, temperatures in key months are 

highly correlated with the DOY of flowering onset. In the 

final step, the average of CTs of February, March and April at 

VPOs locations were calculated for each year. The CTs and 

the extracted measure of flowering synchronicity were 

modelled using linear regression. This helped to estimate that 

how inter-annual variation in climate condition influence the 

synchronicity of flowering onset over the study period, 

addressed by some authors.  

 

 

3 Results 

The first step of the workflow produced CTs which are 

significantly correlated with the DOYs of the VPOs, as shown 

in Figure 1. The average correlation coefficient was 0.88. This 

confirms the significant influence of temperature on the 

timing of spring flowering onset. Figure 1 also summarizes 

the regression parameters and fitted lines to yearly pairs of 

∆DOY and ∆CT of the species. The slopes represent the rate of 

change of DOY per unit of CT. The smaller the slope, the less 

sensitivity of ∆DOY to ∆CT. The slopes changed over the study 

period and are smaller in years with cold winter such as 2006 

and 2013. 

The Delaunay triangulation of VPOs locations produced 

yearly spatial graph (Figure 2). The degree of dispersion of 

VPOs location inter-annually varied, which is intrinsic to 

volunteered observations. VPOs of graphs with small pruning 

distances (e.g., 20 km) tend to be more clustered than those of 

graphs with large pruning distances (e.g., 50 km). Further, 

there was no consistent trend in the value of pruning distance 

in relation to the number of VPOs. For example, in 2005, 

there is approximately the same number of observations as in 

2006 and yet their pruning distances are considerably 

different. In graphs with large pruning distances, any VPO can 

be checked through a larger number of linked VPOs which is 

more effective for identification of inconsistent observations. 

 

Figure 1: Correlation coefficient between CTs and DOYs of 

yearly VPOs as well as the regression lines and their slopes 

fitted to the difference in DOY and CT of yearly VPOs pairs 

(horse chestnut). 
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Figure 2: The pruned Delaunay triangulations of horse 

chestnut: links are equal or lower than the pruning distance 

mentioned in the left bottom of the graphs. 

 
 

 

By comparing the estimated and reported ∆DOY of linked 

VPOs, the yearly percentages of inconsistent VPOs varied 

according to the ∆Max represented in Figure 3. There was an 

inter-annual variation in the smallest ∆Max values for which 

5% or less of VPOs were inconsistent. As the heat map of the 

percentages shows in years with cold winter (e.g., 2006 and 

2013) larger ∆Max leads in 5% or less of inconsistent VPOs 

than years with warm winter (e.g., 2007 and 2014).  

Inconsistent VPOs could be either wrong observations 

caused by the lack of volunteer expertise or a correct 

observation done in a local atmospheric zone where the 

temperatures extremely differs from the surrounding area. The 

proposed workflow helps to understand such types of 

inconsistent VPOs. For example, inconsistent horse chestnut 

VPOs in the southwest of The Netherlands (Figure 4), could 

be caused by influence of warmer sea water in winter/spring. 

 

 

Figure 3: The percentages (cell values) of VPOs identified as 

inconsistent observation. 

 
 

 

Figure 4: Examples of inconsistent observations in 2015: 
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The ANCOVA of the datasets with and without inconsistent 

observations showed that the temporal trends in flowering 

onset are only significantly different when ∆Max is set to 2 

days (p-values < 0.1). Variation caused by genetic or other 

environmental parameters could be more than two days so we 

can conclude that our observations already have a high 

consistency.  
The regression analysis revealed a negative correlation 

between the measures of the synchronicity and the CT over 

the key months prior to flowering onset (Figure 5). This 

correlation is strong (r=0.77). This means that cold late 

winters followed by a cold spring (e.g., 2006 and 2013) tend 

to decrease synchrony of horse chestnut flowering across the 

Netherlands. Years with relatively warm springs (e.g., 2007) 

lead to synchronicity. This finding is confirmed by other 

studies [28, 29]. 
 

Figure 5: The regression analysis of the relationship between 

∆Max corresponding 5% or less inconsistencies and the average 

of CT in February, March and April. 

 
 

 

4 Conclusions 

The analysis of synchronicity of volunteered phenological 

observations can reveal key information about animals and 

plants if it is based on consistent observations. By using the 

locations and dates of the phenological VGI and daily 

temperature data, we designed a workflow to model 

synchronicity while accounting for possible inconsistencies. 

Results indicate that the horse chestnut dataset is highly 

consistent as well as high correlation between temperatures in 

February, March and April and synchronicity of horse 

chestnut flowering across the Netherlands. However, these are 

preliminary results and further research on tuning the 

workflow parameters is needed to verify them. 

The proposed workflow is applicable to datasets collected 

by other VGI-based phenological networks because 

contextual geo-information is now available more than ever 

before. For example, applying the workflow to volunteered 

observations on plants that produce allergenic pollen could 

provide public health decision makers and the general public 

with useful and actionable information. 

 

5 References 

[1] Schwartz MD, Betancourt JL, Weltzin JF. From Caprio's 

lilacs to the USA National Phenology Network. Front 

Ecol Environ. 2012;10(6):324-7. 

[2] Richardson AD, Keenan TF, Migliavacca M, Ryu Y, 

Sonnentag O, Toomey M. Climate change, phenology, 

and phenological control of vegetation feedbacks to the 

climate system. Agricultural and Forest Meteorology. 

2013;169:156-73. 

[3] van Vliet AJH, de Groot RS, Bellens Y, Braun P, 

Bruegger R, Bruns E, et al. The European phenology 

network. Int J Biometeorol. 2003;47(4):202-12. 

[4] Comber A, See L, Fritz S, Van der Velde M, Perger C, 

Foody G. Using control data to determine the reliability 

of volunteered geographic information about land cover. 

Int J Appl Earth Obs Geoinf. 2013;23:37-48. 

[5] Rosemartin AH, Denny EG, Weltzin JF, Lee Marsh R, 

Wilson BE, Mehdipoor H, et al. Lilac and honeysuckle 

phenology data 1956–2014. Sci Data. 2015;2:150038. 

[6] Devictor V, Whittaker RJ, Beltrame C. Beyond scarcity: 

citizen science programmes as useful tools for 

conservation biogeography. Divers Distrib. 

2010;16(3):354-62. 

[7] Lieth H. Phenology and seasonality modeling: Springer 

Science & Business Media; 2013. 

[8] Kudo G, Ida TY, Tani T. Linkages between phenology, 

pollination, photosynthesis, and reproduction in 

deciduous forest understory plants. Ecology. 

2008;89(2):321-31. 

[9] Chmielewski FM, Müller A, Küchler W. Possible 

impacts of climate change on natural vegetation in 

Saxony (Germany). Int J Biometeorol. 2005;50(2):96-

104. 

[10] Schwartz MD, Reiter BE. Changes in north American 

spring. Int J Climatol. 2000;20(8):929-32. 

[11] Rafferty NE, CaraDonna PJ, Burkle LA, Iler AM, 

Bronstein JL. Phenological overlap of interacting species 

in a changing climate: an assessment of available 

approaches. Ecol Evol. 2013;3(9):3183-93. 

[12] Sparks TH, Huber K, Tryjanowski P. Something for the 

weekend? Examining the bias in avian phenological 

recording. Int J Biometeorol. 2008;52(6):505-10. 

[13] Bird TJ, Bates AE, Lefcheck JS, Hill NA, Thomson RJ, 

Edgar GJ, et al. Statistical solutions for error and bias in 

global citizen science datasets. Biol Conserv. 

2014;173:144-54. 

[14] Cohn JP. Citizen science: Can volunteers do real 

research? Bioscience. 2008;58(3):192-7. 

[15] Zmihorski M, Sparks TH, Tryjanowski P. The Weekend 

Bias in Recording Rare Birds: Mechanisms and 

Consequencess. Acta Ornithologica. 2012;47(1):87-94. 

[16] Goodchild MF, Glennon JA. Crowdsourcing geographic 

information for disaster response: a research frontier. 

IJDE. 2010;3(3):231-41. 



AGILE 2016 – Helsinki, June 14-17, 2016 

 

 

[17] Mehdipoor H, Zurita-Milla R, Rosemartin A, Gerst KL, 

Weltzin JF. Developing a Workflow to Identify 

Inconsistencies in Volunteered Geographic Information: 

A Phenological Case Study. PLoS ONE. 

2015;10(10):e0140811. 

[18] Brunsdon C, Comber L. Assessing the changing 

flowering date of the common lilac in North America: a 

random coefficient model approach. Geoinformatica. 

2012;16(4):675-90. 

[19] Dickinson JL, Zuckerberg B, Bonter DN. Citizen science 

as an ecological research tool: challenges and benefits. 

Annu Rev Ecol Evol Syst. 2010;41:149-72. 

[20] Fuccillo KK, Crimmins TM, de Rivera CE, Elder TS. 

Assessing accuracy in citizen science-based plant 

phenology monitoring. Int J Biometeorol. 2014:1-10. 

[21] De Frenne P, Kolb A, Verheyen K, Brunet J, Chabrerie 

O, Decocq G, et al. Unravelling the effects of 

temperature, latitude and local environment on the 

reproduction of forest herbs. Global Ecol Biogeogr. 

2009;18(6):641-51. 

[22] Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas 

R, et al. European phenological response to climate 

change matches the warming pattern. Global Change 

Biol. 2006;12(10):1969-76. 

[23] Salet F. Het interpoleren van temperatuurgegevens. De 

Bilt, Royal Netherlands Meteorological Institute(KNMI). 

2009. 

[24] Law B, Mackowski C, Schoer L, Tweedie T. Flowering 

phenology of myrtaceous trees and their relation to 

climatic, environmental and disturbance variables in 

northern New South Wales. Austral Ecol. 

2000;25(2):160-78. 

[25] Rutishauser T. Cherry tree phenology: Interdisciplinary 

analyses of phenological observations of the cherry tree 

in the extended Swiss plateau region and their relation to 

climate change 2003. 

[26] van Vliet AH, Bron W, Mulder S, van der Slikke W, Odé 

B. Observed climate-induced changes in plant phenology 

in the Netherlands. Reg Environ Change. 

2014;14(3):997-1008. 

[27] Gordo O, Sanz JJ, Lobo JM. Determining the 

environmental factors underlying the spatial variability 

of insect appearance phenology for the honey bee, Apis 

mellifera, and the small white, Pieris rapae. Journal of 

Insect Science. 2010;10. 

[28] Yanenko O, Schlieder C. Enhancing the Quality of 

Volunteered Geographic Information: A Constraint-

Based Approach.  Bridging the Geographic Information 

Sciences. Lecture Notes in Geoinformation and 

Cartography: Springer Berlin Heidelberg; 2012. p. 429-

46. 

[29] Wilkinson L, Friendly M. The History of the Cluster 

Heat Map. The American Statistician. 2009;63(2):179-

84. 

[30] Keppel G. The Analysis of Covariance.  Design and 

analysis: A researcher's handbook: Prentice-Hall, Inc 

1991. 

 


