
1 Introduction  

Renewable energy has a critical role to play in meeting a 

whole host of national and international targets related to 

slowing the advances and impacts of climate change. Whilst 

there is an extensive body of research considering different 

aspects of off-shore and on-shore locations for wind turbines 

(visibility, physical suitability, facility location, service access 

etc), informed by governmental policy, the research and 

policy guidance are lacking for other land based renewable 

energy facilities such as those requiring biomass. As a result, 

the siting of anaerobic digesters, combined heat and power 

facilities, gasification units, etc has occurred on a piecemeal 

and ad hoc basis, with little overall planning. This is 

problematic: many kinds of land based renewable energy 

facilities require biomass as inputs, frequently from 

agricultural residues, slurry or woodland, as well as household 

food waste. Piecemeal and ad hoc siting of such facilities runs 

the risk of sub-optimal and even inappropriate locations being 

identified as suitable when considered at multiple scales such 

as national or community level. This problem is accentuated 

by the potential for multiple facilities of different sizes with 

no consideration of the geographic spread of the land 

resources resource needed to support such facilities.  

A further issue relates to the using of increasingly available 

(and accessible) spatial technologies such as GIS, the latest 

incarnation of which include very powerful functionality such 

as location-allocation tools. These seek to match potential 

facility locations (supply) with the spatial distribution of 

demand. However a recent review of the renewable energy 

and energy policy literature [1] identified a dearth of correctly 

formulated methods in renewable energy facility planning. 

Specifically most of the approaches reported in the energy 

literature lacked the correct and appropriate selection and 

application of location-allocation models, failed to give robust 

consideration of the location of the feedstocks needed by 

biomass renewable energy facilities and failed to consider 

feedstock catchments for biomass and competition for them in 

an appropriate way: in many instances the result was 

inappropriate statistical methods and fallacious (mapped) 

results: the researchers had simply ‘pressed the GIS button’ 

without fully understanding the tools being used nor their 

underlying assumptions.  

The p-median problem seeks to match the spatial 

distributions of supply and demand [2, 3]. Typically, potential 

sets of n locations are evaluated by the degree to which they 

minimise some objective function such as ‘demand weighted 

distance’ (for example, measured in person kilometres). 

Comber et al [1] extended the p-median to consider the 

biomass catchments required by n competing facility 

locations, such that the optimal subset of included locations 

that minimised demand weighted distance and did not have 

overlapping resource catchments. The case study developed 

by [1] considered only one size of facility, with a fixed 

biomass resource requirement. However, to support holistic 

planning of renewable energy and to maximise the potential of 

renewable energy, it is important for policy makers and 

planners to be able to consider multiple types and sizes of 

facility, with different resource requirements. As yet no 

research in the spatial planning literature has developed 

methods to optimally locate multiple sized facilities using 

robust, correctly formulated location-allocation methods. 

Typically, approaches undertake a suitability analysis but with 

no account of the specialities of demand [4] or use location-

allocation approaches constrained by cost [5] or distance [6] 

and some research has identified sites one at a time 

sequentially [7]. None of these result in optimality. None fo 

the consider resource catchments and demand. None fo them 

consider these for different sized facilities. This paper presents 

a method for identifying the optimal locations of multiple 

renewable energy faculties, whilst considering their biomass 

requirements and associated catchments and the need to avoid 

competition for resources.  
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Abstract 

This paper presents a spatial, hierarchical extension to the p-median problem in order to optimally locate multiple types and sizes of land 

based, biomass renewable energy facilities. The aim was 1) to ensure that the resource catchments required at selected locations did not 

overlap with other facility locations, and 2) to minimise transport distances (net energy gains). The problem is essentially a packing 

problem, where optimality was related to minimising distances to forest biomass. Some simple logics were applied in this initial piece of 

work and some further extensions are described. 
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2 Case Study 

A simplified case study was used to demonstrate the method 

extension. It seeks to determine the optimal location of a set 

of different sized renewable energy facilities all competing for 

forestry based biomass feedstocks in the North East Scotland 

region. Resource supply was a woodland 1km dataset derived 

using the method described in [8]. 

The harvestable biomass production from woodland is 12.9 

t ha-1 yr-1 which equates to 1,290 t km-2 at 1km resolution 

(http://www.biomassenergycentre.org.uk). Demand was the 

population in census output areas classified as rural. 

 

Figure 1: The study area in north east Scotland and the spatial 

distribution of wood biomass (green is more, yellow is less), 

and rural census areas with a transparency term added to the 

shading and an OpenStreetMap backdrop. 

 
 

Three types of Combined Heat and Power (CHP) units were 

considered, with different capacities (energy outputs) and 

different feedstock or input demands.  

- 1 MW, requiring 5,000 t yr-1 of feedstock;  

- 4 MW, requiring 20,000 t yr-1 of feedstock;  

- 20 MW, requiring 100,000 t yr-1 of feedstock.  

In the study area the total potential amount of annual 

biomass from woodland is 1,895,677 t yr-1 and a mix of 3 

20MW CHPs, 10 4MW CHPs and 30 1MW CHPs. This 

equates to a biomass supply of 650,000 t yr-1 or 34% of the 

available supply. 

 

3 Algorithm 

The algorithm has an objective function of minimising 

resource catchments sequentially for different sized facilities. 

Potential sites for the larger objects are identified first, 

followed by smaller objects which infill the gaps around the 

larger objects. In each stage, the algorithm proposed by 

Comber et al is applied. It applies the p-median problem, 

defined as:  
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Eqn	1� 

where i is the index of demand locations (1 to m) and j is the 

index of supply (1 to n), ai represents the demand at demand 

location i, dij is the distance between i and j and xij is an 

allocation decision variable with a value of 1 if demand at 

location i, is served by a supply j and 0 if otherwise. In this 

way the p-median model accepts new potential locations if 

they reduce the overall demand weighted distance between 

supply and demand locations. The Comber et al (20150 

extension constrains the interchange such that the catchments 

of the candidate locations do not spatially intersect (overlap) 

with catchments of the current set of locations, V. Formally 

then Equation 1 is subject to  
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The further extension proposed here applies this 

sequentially to different sets of differently sized facilities. In 

pseudocode this is:  

1. Use the algorithm to optimally locate the 20MW 

facilities 

2. Remove these catchments from the search space  

3. Use the algorithm to optimally locate the 4MW 

facilities 

4. Remove these catchments from the search space 

5. Use the algorithm to optimally locate the 1MW 

facilities 

The removal of already used catchments from the search 

space – that is, those whose resources have already been 

allocated to a facility – was done by not selecting new sites 

whose resource catchments overlap with those of already 

selected sites. 

 

4 Initial Results and Discussion 

The results in Figure 2 indicate the optimal locations for a mix 

of different sized CHP units, where optimality is defined on 

minimising feedstock distance and non-overlapping resource 

catchments for each facility. In this case the feedstock was 

biomass from woodlands. The algorithm is essentially a 

packing algorithm but rather than being in Euclidean space as 

many packing problems are (eg to optimally fill a container 

with different sized boxes), in this case the space is distorted 

by the availability of resources. The approach taken has been 

based on truck driver logic – optimally pack large items first 

because these for which there is less choice over where they 

could go and they will have largest impact on supply and 

demand. Potential locations are selected by distance as a 

proxy for transport, and therefore energy, costs.  

The optimal selection of suitable sites for RE facilities is 

critical if land based biomass resources are to be efficiently 

and maximally used to support a diverse range of objectives 

including food and energy security as well as environmental 

protection. This paper proposes a hierarchical extension to the 

p-median problem in order to optimally locate different sizes 

of CHP units.  

The method allows locations for multiple types and size of 

facilities to be evaluated. The algorithm could be applied to 

select optimal sites for multiple types and sizes of renewable 
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energy facilities CHPs, anaerobic digesters, gasification units 

etc. It supports holistic, strategic regional planning and well as 

community level energy initiatives. The latter are increasingly 

being supported in Scotland (eg 

http://www.localenergyscotland.org/cares).  

The next steps in this work are numerous. First, the 

algorithm at present may produce sub-optimal results because 

every possible spatial configuration of different numbers and 

sizes of facilities are not examined. This is an enormous 

search space: it requires consideration of every possible 

combination of zero to the maximum number of facilities 

constrained by the desired percentage of land resource to be 

used, for as many types and facilities under consideration. 

Grouping genetic algorithms have been shown to be 

particularly efficient at moving through such spaces: quicker 

and better than commonly used heuristics such as Teizt and 

Bart or standard genetic algorithms. Second, the evaluation 

function will be reformulated to net carbon gains. At the 

moment much of the research in this area is fixated with oil 

prices – essentially increases in price make renewable energy 

solutions more attractive. However this is to miss the point: 

the reason for need renewable energy is to reduce the carbon 

(not financial) costs of energy. Thus energy robust evaluations 

are needed that based on net carbon gains and not transport 

costs. Third, there is a large amount of political activity in 

Scotland promoting community level land reform and most 

proposals include a renewable energy proposal. The long term 

aims of this work are to develop a multi-scaled, energy robust 

planning tool to be used at community, regional and national 

scales. Fourth, there is also a need to consider the degree of 

community uptake and to this end energy aware geo-

demographic classifications will be used to identify 

community receptiveness to renewable energy which may 

have considerable location implications for example relating 

to grid and infrastructure extensions, community participation 

supplying household waste to anaerobic digesters etc. Finally 

future work will consider network distances and net carbon 

gains in relation to resource transportation rather the 

Euclidean distances used here, to explore how asymmetric, 

amorphous catchments may be incorporated, allowing them to 

fill the available space between already selected sites and to 

consider different combinations of feedstocks – domestic, 

forest and agricultural. Household waste for ADs would locate 

sites nearer to higher population areas, for example. 
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Figure 2: The locations selected locations and their catchments with the spatial distribution of forest biomass and the potential 

sites as context. 

 
 


