
1 Introduction 

A particular problem for urban transportation planners is to 

cope with local concentrations of high traffic volumes, which 

may lead to negative effects such as traffic jams, reduced air 

quality or shortages of parking space [7]. In many cases, these 

congestions develop in the vicinity of particular destinations, 

which attract a high share of motorized traffic, such as main 

shopping districts, airports or train stations. In order to 

improve such situations by means of precedent planning or 

managing transport with intelligent transportation systems 

(ITS), the particular challenge lies in predicting probable 

access routes of drivers to the particular destination whose 

exact point of origin, however, is unknown or at least 

uncertain. In some cases, the origin of the trip can be 

approximately described as somewhere inside a given 

polygon, as for instance within a traffic analysis zone (TAZ), 

a fundamental spatial unit used for travel demand modelling, 

or within an administrative area [5, 9].  

Concerning both examples, the focus is on the identification 

of the road segments which are most probably visited by 

drivers who start their trip from an uncertain location 

somewhere inside a given polygon. Previously, a method has 

been proposed which involved using a large set of candidate 

points as potential origins, each of which is taken as the input 

for a shortest path calculation to a fixed destination point 

outside of the polygon [9].  

Based on these insights, this study is motivated as follows. 

Firstly, due to a lack of empirical data, the results of our 

previous study could not be validated. The availability of 

large sets of floating car data (FCD), especially obtained from 

taxi drivers, however, allows for a comparison of calculated 

frequencies with actual empirical data. Secondly, while [9] 

applied a simple shortest path algorithm, the routing algorithm 

in this work will factor in insights about the actual route 

choice heuristics used by taxi drivers, as described in the 

literature [8, 10]. Thus, the aim of this study is to apply a 

similar method to a scenario for which such FCD exists, apply 

a more elaborate routing algorithm, and present a 

methodology for model validation. 

This paper is organized as follows: First, the method used for 

route calculation and the floating car dataset will be described. 

In the following, our method will be discussed before the 

results are presented. Finally, we provide a discussion and 

propose future research activities. 

 

2 Calculating Route Probability from an 

Uncertain Origin to a Destination 

In our previous study, the aim was to compute the probability 

of visitors of a football game choosing specific routes from 

their home county to the stadium [9]. Thus, while their 

destination is exactly known, their point of origin can only 

approximately be described as within an administrative area. 

Representing the road network as a graph G = (V, E), the 

probability p(e) for each edge e ∈ E being visited by a visitor 

is calculated. Following a frequency-based approach, p(e) of 

this event can be inferred from its relative frequency f(e) in a 

number of trials, so that f(E) = p(E) [3]. 

Using a range of approaches, including purely geometrical 

and geographically-weighted methods, large sets of candidate 

points V’ ∈ V located within the polygonal boundary, which 

represents the potential area for the starting location, are 

calculated. Then, shortest paths are computed for each pair of 

candidate point and destination. Afterwards, the route 

frequency f(e1…n) for each edge e is obtained based on the 

number of overlapping routes. In order to infer p(e1…n) from 

f(e1…n), the results are normalized by division of the frequency 

value for each segment i with the maximum frequency value 

fmax found among all network segments. These values, which 

range from 0 - 1 for each are called R-values in [9]. 
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Comparing the results, it could be concluded that the different 

methods of conceiving the set of candidate points produce 

only slightly different results, so a geometric solution, which 

can be more feasible in terms of computational effort or data 

requirements, may be sufficient [9]. 

 

3 Floating Car Data 

In this study, building on the results of [9], a model of route 

probability calculation will be compared to actual route choice 

behavior as obtained from FCD. Today, there are several 

datasets available which include tracking data of fleets of 

commercial but also private vehicles. These data are generally 

obtained from GPS-based positioning and include x, y, z 

coordinate tuples which are automatically mapped at a 

predefined certain time interval. In the past, FCD have been 

used in a variety of studies, including as a basis for dynamic 

navigation systems [8], in order to estimate traffic conditions 

[1] and develop route choice models for heavy good vehicles 

[4], commuters [2], or taxi drivers [10]. For the latter, it has 

been found that they tend to optimize travel speed, minimize 

the number of left turns and prefer roads of a higher 

hierarchical level, such as expressways [8, 10]. 

There are, however, several problems and potential pitfalls 

when using FCD, including privacy issues but also errors or 

inaccuracies which might require extensive post-processing of 

the raw data [2]. 

Concerning the dataset used in this study, it was collected by 

[6] from approximately 500 taxis over 30 days in the San 

Francisco Bay Area and includes, apart from the temporal and 

location data, further information such as the taxi ID and the 

status as free or occupied. Due to positional errors, occasional 

temporal and spatial gaps between tracked points and 

attributive inaccuracies, especially concerning the occupation 

status, several processing steps were necessary before using 

the data for analysis, which will be described in the following 

chapter. 

 

4 Method 

In this section, our method is described, starting with the 

routing and probability calculation. In the following, the focus 

is on the post-processing of the FCD and the comparison of 

the results. 

 

4.1 Calculating Route Probability 

In accordance with the FC dataset of [6], San Francisco 

(California) was chosen as study area. As a distinct 

destination point vd for our study, we choose the San 

Francisco Caltrain Station as a representative location which 

might attract a high share of motorized traffic, so that 

resulting problems are to be expected in its vicinity. In 

addition, a preliminary check of the FC dataset showed that 

there are a sufficient number of GPS trajectories which 

terminate there. As a polygonal area P to represent the 

uncertain starting point, the administrative zip codes 94105, 

94110, 94117, 94123 were chosen so that vd ∉ P. 

In a first step, following the argumentation by [9], a simple 

point generation method was applied to create a set of 

candidate points V’ within the zip code polygon P. Thus, 1000 

points were created and randomly dispersed among the road 

network so that each v’ ∈ V and v’ ∈ P. Then, optimal paths 

were calculated for each pair of v’ and vd. According to the 

typical route choice heuristics of taxi drivers described 

previously, the optimization algorithm preferred faster rather 

than shorter routes and avoided left turns.  

In the following, the route frequency f(e1…n) for each edge e 

could be calculated by counting the number of overlapping 

routes. In order to infer p(e1…n) from f(e1…n), the results were 

normalized by division of the frequency values with the 

maximum frequency value fmax found among all network 

segments in order to receive R-values between 0 – 1. 

 

4.2 Validation with FCD 

Before using the FCD for further analysis, several steps of 

processing were necessary. As a first step, only the trajectories 

were selected, which changed their status from unoccupied to 

occupied within the selected zip code area, and turned again to 

unoccupied in the direct vicinity, in our case a buffer distance 

of 50 m, of the San Francisco Caltrain Station. Thus, we 

received 729 trajectories in total, which originated within P 

and terminated at vd. In the next step, the tracking points were 

snapped to the nearest road network segment. Unfortunately, 

the temporal intervals between recorded locations were not 

constant, but in some cases, there were longer intervals with 

no recorded coordinate pairs. In these cases, the fastest path 

was calculated in between the remaining points in order to 

achieve probable routes, as shown in figure 1. As illustrated, 

this method may lead to inaccuracies, since the actual route 

between these two recorded points is not known. 

 

Figure 1.: Estimation of Incomplete Trajectories 

 
 

Finally, visual analysis of the set of trajectories demonstrated 

that a certain number clearly included more than just one trip, 

but did not change the occupation status attribute accordingly. 

In order to cope with these inaccuracies, for each trajectory, 

the according shortest path was calculated and the lengths 

compared to each other. Trajectories which were longer than 

the mean of the relative difference were excluded from further 

analysis. In the following steps, the absolute and relative route 

frequency was calculated for each road network segment as 

described previously, and the difference calculated among the 
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simulated values and the trajectory-based values. For this 

reason, both R-values were normalized by division by the 

larger one of the two values, and the difference calculated 

between them. Thus, we receive what we call O-values, which 

can range from 0 (perfect prediction) to 1 (false prediction). 

 

5 Results 

Figure 2 illustrates the resulting O-values for a selection of 

road segments, namely the 50 most frequented as received 

from the FCD. As one can see, these are mainly in the direct 

vicinity of vd, which is not surprising since the incoming 

traffic from different directions is gradually being channelled 

there. On the map, it is also visible that there are huge 

differences regarding the predictive quality of the model, with 

relative frequencies on some road segments being predicted to 

a high degree while others were either missed or inaccurately 

included in our routing. 

 

Figure 2.: Results for the 50 Most Frequented Road 

Segments 

 
 

The overall quality of the model is more clearly visible in 

figure 3, which shows a boxplot of the O-values for the 

respective road segments. As one can see, the mean of O-

values lies at 0.55, with a large variability of results. The 

lower and upper quartiles lie at 0.39 and 0.94, respectively. 

 

Figure 3.: Boxplot of O-Values for the 50 Most Frequented 

Road Segments 

 

6 Discussion of the Results 

In this chapter, the model results will be discussed. Although 

several highly frequented road segments, especially near the 

destination point, were predicted accurately, there are also 

some cases in which the predicted routes differed to a high 

degree from the ones obtained from the FCD. Some cases are 

rather obvious, such as the road segment directly south-west 

of the destination point, as can be seen in figure 2. The high 

frequency value for the taxis can be explained by the presence 

of a taxi parking area on this side of the station, while in our 

model, the main entrance, which is located on the north-

eastern side of the building, was used as vd. Representing the 

destination with more than just one vd may therefore improve 

the model quality. Other examples of low predictive accuracy, 

however, demonstrate the boundaries of our behavioural 

assumptions, such as perfect spatial knowledge, or the homo 

economicus concept. As can be seen in figure 4, for instance, 

of around 75 taxi drivers leaving the polygon on the same 

road, only one third chose the highway, which, based on the 

literature on taxi drivers’ route choice heuristics, would be 

preferred in our model, while two thirds actually avoided the 

highway. Such behavioural differences might also be time-

dependent and require a more elaborate routing algorithm. 

 

Figure 4.: Differences in Route Choice Strategies among 

Taxi Drivers 

 
 

7 Conclusion 

This study aimed to validate a route probability model with 

FCD. Using the example of taxis approaching an inner-city 

train station from unknown starting locations, probable routes 

were calculated and the results compared to actual routes 

obtained from a FC dataset. As the results have demonstrated, 

the aim of identifying the probable access routes of drivers to 

the particular destination has partly been achieved. However, 

while several access routes have been predicted to a satisfying 

degree, others were missed or wrongly assigned traffic 

volume. Thus, it seems as if the general assumptions about 

taxi drivers’ route choice heuristics, on which this study was 

based, need to be reconsidered, such as highway preference. It 

is also thinkable that the inclusion of dynamic traffic 

conditions would be a possible way to improve the model. A 
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difference to the original study by [9] arises from the network 

structure. While in the first study, the environmental setting 

was rather rural, with a few dispersed town centres, in this 

work we focused on an urban area with a regular street 

pattern. As a result, differences in model quality can be 

expected. For future work, therefore, it is planned to examine 

the effect of network structure, especially network 

connectivity, on the predictive quality of the model. 
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