
1 Introduction

When a massive destruction is projected for a forthcoming

disaster, evacuation often become so obvious to minimize the

casualties. In some cases, the responsible authorities (public

safety agencies, police department etc.) provide special

evacuation units (vehicles) to collect and shift the people to a

safe place which is called herein as the assisted evacuation. The

route plan for each evacuation unit has significant effects on the

efficiency of assisted evacuation.

 Quite a large number of operation researches have been

carried out in the domain of evacuation management mainly

focusing on the self-evacuation or car based evacuation. The

authors refer to [3, 4, 9, 10, 11] for some good models and

algorithms on car-based evacuation problems. However, very

few researches address the issue of assisted evacuation.

Recently, a few number of researches came out with transit-

based models that are pretty close the assisted evacuation

problem. We have found the bus-based evacuation planning

problem (BBEP) developed by Bish [2] as a closest solution for

the assisted evacuation problem.

Bish considered the BBEP identical to the Vehicle Routing

Problem (VRP) [1]. For the BBEP, a number of depots, where

initially a number of buses with defined capacity are situated, a

number of pickup locations (sources) where evacuees should

be gathered for their transit, a number of safe distinctions

(shelters or sinks) with available minimum requirements for

evacuees like beds, blankets, food, etc. are given [12]. The

number of evacuees at the sources and the capacities at the

sinks are known in advance. The problem that BBEP solves is

to transport evacuees from sources to sinks in the minimal

amount of time, i.e., the minimal duration of evacuation by

routing and scheduling a set of homogeneous and capacitated

buses. The duration of evacuation is defined as the time span

between when the first bus leaves its depot until the last

evacuees is reached to the sinks [12].

The BBEP is further enriched and modified by Goerigk,

Grün, and Heßler [6] by developing branch and bound

algorithms. Goerigk and Grün [5] further extended the BBEP

to a robust bus-based evacuation problem (RBBEP) assuming

that the number of evacuees are unknown while setting

estimation of evacuees at each source point. For other

extensions we refer to [7, 8].

In general the BBEP/RBBEP is a very good approach to

optimize the assisted evacuation process if we consider that the

source points are fixed and well known in advance both to the

evacuees and the bus operator and the evacuees are able to

gather themselves in those source points. Now the problem is,

first of all, the BBEP/RBBEP does not tell anything about how

to create/define those source points. Secondly, a non-optimized

set of source points could hinder the total optimization process.

And finally, in reality, there exists evacuees who are subject to

severe mobility restriction and thus cannot arrange themselves

move to the source points. Therefore, a door to door collection

of the evacuees with automatic optimized set of source points

certainly preside over the given fixed source base collection of

BBEP. For example while collecting evacuees from door to

door a source point has to be created at the point where the

evacuation unit/bus is full. If the source points could be created

in such a way the general BBEP could be applied afterwards

considering those source points and given number of sinks.

Our contribution: In this paper, we focus on the approach

of door to door collection of evacuees. We introduce an

approach followed by an algorithm to create the source points

dynamically depending on the location of the evacuees and the

capacity of the evacuation units. The algorithm is implemented

and applied to a test scenario and the results are discussed.

Road network segmentation for bus-based evacuation

 Md. Imran Hossain

University of the Bundeswehr Munich

Institute for Applied Computer Science

Werner-Heisenberg-Weg 39

85577 Neubiberg, Germany

Imran.Hossain@unibw.de

Wolfgang Reinhardt

University of the Bundeswehr Munich

Institute for Applied Computer Science

Werner-Heisenberg-Weg 39

85577 Neubiberg, Germany

Wolfgang.Reinhardt@unibw.de

Abstract

Mass evacuation of large groups of people is a very important task in some specific cases of disasters. In these cases of evacuation a number

of vehicles (buses) are used to collect the people living in a specific area and to transfer them to a safe place or a hospital, often under a time

constraint. As in general there is a large number of people and a limited number of evacuation units (vehicles/buses) with limited capacities

the optimization of the evacuation related to routes and time is a complex problem. In literature this optimization problem is often called the

bus based evacuation problem (BBEP). BBEP algorithms assume that the number of evacuees in a specific area is given and that they can be

collected from predefined fixed locations (source points). Such predefined fixed source points certainly limit the evacuation process. Therefore

in this paper we present an extension of the published evacuation approaches by introducing a way to overcome the limitations of predefined

fixed locations and to collect the people from the premises where they live instead.

Keywords: Assisted Evacuation, Bus-based Evacuation Problem (BBEP), Spatial Algorithm, Source Points generation

AGILE 2015 – Lisbon, June 9-12, 2015

2 An approach for automatic source points

creation

2.1 Problem definition

Input: Let B = {b1,…, bn} | n  ℕ, be the set of buildings and

R = {r1,…, rm}| m  ℕ, be the set of the roads in a road network.

It is normal that the number of buildings in a given area is

higher than the number of roads and we assume that n > m.

Each building bi  B |1 ≤i ≤n, has given a number of
evacuees E(bi) and name of the access road M(bi). Each road

rj  R |1 ≤ j ≤m, has a given an address including the name
M(rj) and a given direction vector V(rj). Let C be the capacity

of an evacuation unit/bus. We assume that C is the same for all

evacuation units/buses.

Output: Segmentation of each rj  R into a set like { (rj)1,…,

(rj)k }| 0 ≤ k, based on the criteria of the equation 1. The E(rj)p

| p ≤ k, in equation 1 is the value of an element (rj)p  rj that

refer to the number of evacuees associated with (rj)p. In other

word, each small segment of a road should consist of a number

of evacuees equal to the capacity of an evacuation unit.

Besides, a set of source points S = {s1,…, sl} | l  ℕ has to be

created satisfying the equation 2. Also in other words each

small segment of a road has to be given a source point.

E(rj)p = C… (1)

Exception: only one sub-segment of a road can violate criteria

mentioned in equation 1 where E(rj)p could be less than C as

the number of evacuees living in a road is not a multiple of the

capacity of an evacuation unit.

Example: The problem and the expected solution could be

illustrated best, as it is often the case, with pictures. In figure 1

the polygons represent the buildings and the number inside

each polygon represents the number of evacuees. A single road

“Washington Street” which starts at point A and finished at

point B is represented by the gray thick line. The arrow inside

the road shows the direction by which a vehicle can traverse.

Let us assume that the capacity of the evacuation unit/bus is 10.

Figure1: Example of the problem scenario

Now imagine that the evacuation units starts its operation from

point A. The vehicle will get full at the blue building and at this

point a source point C has to be created from where the vehicle

directly goes to the sink. In the next round just prior to the green

building there will be 8 evacuees inside the vehicle. Therefore,

it can take only 2 evacuees from the green building and leave

the other 2 for the next round creating a source point D. Thus,

the last segment DB would contain only 3 evacuees and the

source point e lies somewhere in the segment.

Figure 2: Expected solution of the problem

Figure 2, which represents the outputs, shows that the

Washington Street AB is divided into 3 parts: AC, CD and DB.

Except the segment DB the other segments contains exactly 10

evacuees. In addition, 3 source points (red circles) have been

created for all segments. The segment DB which contains 3

evacuees could be combined with the other road (if exist)

linked with Washington Street at the point B to further optimize

the process but this issue is treated as a future work.

2.2 The algorithm

The input and output for the algorithm have already been

described in section 2.1. In general, the algorithm first transfers

the number of evacuees from a given building layer to the given

associated road network layer, segments the road network layer

in a way that each segment contains the number of evacuees

equal to the evacuation unit capacity and finally creates a

source point on each segment in a defined specific location. To

avoid complexity in this initial attempt we assume that the

capacity of all evacuation units are identical. The algorithm is

described in more detail through the following three steps with

pseudo codes and graphics.

Step 1: Transfer of no. of evacuees from building to road:

The algorithm (pseudo codes) and a graphical illustration of

this step are given in the figure 3.a and figure 3.b respectively.

In this very first step the number of evacuees E(b) reside in
each buildings b is projected to its associated road r in a certain

point (“Road Point”p) on the road r. A match between the road

name from the building’s address and the road names of roads

figures out the road to which a building is connected. This

approach eliminates the dilemma of associated/connected road

for a building located at a junction of roads.

To do this projection, at first, the algorithm creates an empty

point set P ={} for road points. Then for each building bB the
algorithm searches the road rR to which it is connected.
This is done by matching the road name M(r) of r with the
road name M(b) from the building address. Then the

centroids (centroid(x,y)) of the building is calculated and a

perpendicular line pL is drawn from the centroid(x,y) to the r .

A point pP is then created at the intersection point
between r and pL. The no. of evacuees of the building b and

Washington Street

Washington Street

2

1

4

0
1

2

0

1

2 3

A B

A B C

2 4

… (2)

C = 10

D

2

0

1

4

1

3 2

0

1 4

2 3

e

Segment AC

Evacuees = 10

A C C D D B

Segment CD

Evacuees = 10
Segment DB

Evacuees = 3

AGILE 2015 – Lisbon, June 9-12, 2015

0

some attributes of the r and b like “building ID”, “Road ID”
are stored with the road point p in addition. The p is then
added to the set of P.

Figure 3: Algorithm subset and graphical illustration of step 1

Step 2: Linear referencing of the elements of the set P: The

algorithm (pseudo codes) and a graphical illustration of this

step are given in the figure 4.a and figure 4.b respectively. The

goal of this step is to sort the road points located in each road r

according to the distance between the road point p and the start

point of the road so that the road points in each road r could be

traverse sequentially for creating a source point afterwards.

For this the algorithm first creates one empty set of sets Q for

road points and one empty set T for routes. Thereafter, for each

road rR the r is converted to a route t and added to the T.
After that the associated set of road points SubP ⊆ P for r

are retrieved through ID. The distance for each element (road

point) of SubP from the starting point of r is measured with

linear referencing technique with the support of the associated

route t and is stored with the element as an attribute. The SubP

is then sorted according to the measured distance in ascending

order. At the end the SubP is added to the Q set.

Step 3: Road segments and source points creation: The

algorithm (pseudo codes) of this step is given in figure 5.a. and

is explained with the graphics of the figure 5.b. In this step at

first a sorted SubP ⊆ P is retrieved from the set Q. Let us
think that the yellow points containing the no. of evacuees
in middle in figure 5.b are the elements of a SubP. The

elements are sorted according to the step 2 and their
sequence numbers are given below each element (yellow
point). The grey thick line is a single road for which the start
point is A and the end Point is B. Let us assume that the
capacity of the evacuation unit C = 10. The red points with
ID inside represent the output source points and the blue
lines with ID represent the output road segments. In
general, the algorithm sums up the no. of evacuees by
traversing through the elements according to the sequence
and segments and points are created according to five
different conditions.

Figure 4: Algorithm subset and graphical illustration of step 2

Condition 1(refers to source point 1 and Segment 1 in figure

5.b): if at any element (ID=2) the sum of evacuees (SumE) = C

then a source point (ID=1) is created on the location of that

element and a road segment (ID=1) is created by splitting the

road at the source point. Once a source point is created the value

of SumE is reset to 0.

Data: FeatureSet B, FeatureSet R and No. of Evacuees attribute E(b)
Result: FeatureSet RoadPoints P
 /*creating an empty point FeatureSet for RoadPoints with
 necessary attributes like “No of evacuees”, “building ID”
 “raod ID” etc.
1 Create RoadPointsSet P  
 /* populating the RoadPoints FeatureSet
2 for each Building b  B do
 /*function for finding the road which name is same to the
 road name in building address. This returns the road r
3 ƒunction [FindAssociatedRoad (M(b))] | returns road r  R
 /*this function calculates and returns the centroid point
 of the building.
4 ƒunction [CalculateCentroidPoint (b)] | returns centroid (x,y)
 /*this function calculates and returns a perpendicular line from
 centroid (x,y) to the found road r
5 ƒunction [DrawPerpendicularLine (from centroind (x,y) to r)]
 | returns perpendicularLine pL
 /*this function calculates and returns a point p  P at the
 intersection of r and pL
6 ƒunction [CreatePointAtIntersection (r, pL)] | returns p  P
 /*this function populates the attributes of p  P
7 ƒunction [PopulateAttributesOf(p)]
 | returns p  P with attributes
 /*this procedure adds the p to P set
8 þrocedure [Add p to RoadPointsSet P]
9 return RoadPointsSet P

Data: Road Points FeatureSet P and Road FeatureSet R
Result: q | q = m sorted sets/arrays of Road Points in a set Q
 and Route FeatureSet T
 /*creating an empty Route FeatureSet T with attributes similar to
 Road FeatureSet
1 Create Route T  
 /*creating an empty set of sets Q for q sets of road points
2 Create Q  
3 for each Road r  R do
 /*function for converting the road r to a route t
 This returns the route t of road r
4 ƒunction [CreateRoute(r)] | returns route t of r
 /*this procedure adds the t to T set
5 þrocedure [Add t to Route T]
 /*select the road points from P that are located on the r
6 ƒunction [SelectRoadPoints(Road Id = RoadPoint ID)]
 | returns the subset of P as SubP
 /*next loop measures distance from the start point of the
 Road r to each road points in SubP
7 for each p  SubP do
8 ƒunction [MeasureDistance(p to StartPoint of r)
 /*this function returns the SubP with the elements of it sorted
 according to the its measured distance in ascending order
9 ƒunction [SortSubPAccordingToMeasuredDistance
 (ascending order)] | returns sorted SubP
 /*this procedure adds the SubP to Q set
10 þrocedure [Add SubP to Q]
11 return Route T
12 return Q

(a)

(a)

(b)

(b)

AGILE 2015 – Lisbon, June 9-12, 2015

Figure 5: Algorithm subset and graphical illustration of step 3

Condition 2 (refers to source point and segment 2 and 3): if the

SumE > C at an element (ID=5) and there are no remaining

evacuees in the previously created source point (ID=1) then n

source points (ID=2,3) are created at that element location

where n = rounded lower integer of (SumE)/C. The segment (2)

for first source point (ID=2) is created by segmenting the road

from previous source point (ID=1) to the location of the current

element (ID=5). For the rest of the source points (ID=3), zero

lengths segments (ID=3) are created for which the start and end

point are the same. Any remaining evacuees (in this case 3) is

stored in a variable and the SumE reset to 0.

Condition 3 (refers to source point 4 and segment 4): if the

SumE > C at an element (ID=7) and there are remaining

evacuees in the previously created source point (ID=3) then a

source point (ID=4) at a location in middle between the element

(ID=7) and the previous source point (ID=3). A new segment

(ID = 4) is created by segmenting the road from previous source

point (ID=3) to present element (ID=7). The remaining

evacuees (1 evacuees) at the present element is calculated and

the SumE is reset to 0.

Condition 4(refers to source point 5 and segment 5): if the

SumE = C at an element (ID=9) and there are remaining

evacuees in the previously created source point (ID=4) then a

source point (ID=5) is created in a middle point between the

present element (ID=9) and element (ID=7). Again, a new

segment (ID = 5) is created by segmenting the road from

element (ID=7) to present element (ID=9).

Condition 5(refers to source point 6 and segment 6): if the

SumE>0 at the last element (ID=10) then a source point (ID=6)

is created in a middle point between the end point of last

segment (ID=5) and the end point (B) of the road. A segment

(ID=6)is also created between those two points.

3 Result and discussion

The algorithm we presented in section 2 has been implemented

using c# and ArcObjects library of ESRI. We have used

OpenStreetMap(OSM) data for the input. The addresses of the

buildings are generated with geocoding Web Service as the

address is not included in the OSM data. The no. of evacuees

for buildings are generated randomly. Figure 6 and 7 show the

result of 2 examples of the implemented algorithm. The green

dots are the source points and the red dots are the road points

in both figures. The total no. of evacuees ware 1144 for both

cases. In figure 6, with given C=25 the algorithm created 57

source points and segments. The number of source points and

segments are 26 in the second case with given C = 50.

Now if we divide the total evacuees (1144) by two different

values of C: 25 and 50 we will get in first case 45 and in second

case 22 full loads and some remaining’s. This no. of full loads

are a bit lower than the actual no. of source points/segments

created in figure 6 and 7. In fact this is expected and happens

because of the condition 5 of step 3 of the algorithm where a

source point in each road is created at the end with the

remaining evacuees even though the total no. of evacuees are

far less than C.

Point to be noted here that the algorithm so far segments each

road in a mutually exclusive way. The effects of intersecting

roads on the segmentation and source point creation is not

treated in this very first version of the solution. This issue is

therefore considered as an immediate future extension.

Data: Q which is the Set of sorted SubP ⊆ P and Evacuation Unit
 Capacity C
Result: FeatureSet of Source Points S
 /*creating an empty point FeatureSet for Source Points P with
 attributes like “No of evacuees” and “road ID”
1 Create SourcePointSet S  
 /*creating an empty line FeatureSet for Road Segment L with
 attributes like “No of evacuees” and “Segment ID”
2 Create RoadSegmentSet L  
 /* populating the SourcePointSet and RoadSegmentSet
3 for each Sorted SubP  Q do
 /*static variable for keeping track evacuees in vehicle
4 EvacueesInVehicle EV = 0
 /*static variable for keeping track of remaining evacuees at
 a certain raod point p
5 RemainingEvacuees RV = 0
 /*static point variable for keeping track of the start point
 of a raod segment
6 StartPoint SP = Start point of road r to which SubP is …
 associated with
 /*static point variable for keeping track of the end point
 of a raod segment
7 EndPoint EP = null
8 for each Road Pont p  SubP do
9 EV = EV + EvacueesAtRoadPoint p + RV
10 if (EV = C) and (RV = 0) do
11 ƒunction [Create Source Point s (location of
 RoadPoint p) | returns Source Point s
12 þrocedure [Add s to S]
13 EP = p
14 ƒunction [Create Road Segment l (From SP to
 to EP)] | returns Road Segment l
15 þrocedure [Add l to L]
16 SP = p, EV = 0, RV = 0
17 else if (EV = C) and (RV > 0) do
18 ƒunction [Create Source Point s (location between
 SP and p) | returns Source Point s
19 þrocedure [Add s to S]
20 EP = p
21 ƒunction [Create Road Segment l (From SP to
 to EP)] | returns Road Segment l
22 þrocedure [Add l to L]
23 SP = p, EV = 0, RV = 0
24 else if (EV > C) and (RV = 0) do
25 ƒunction [Create s at location of RoadPoint p…
 u time where u = floor of EV/C
26 þrocedure [Add u no. of s to S]
27 EP = p
28 ƒunction [Create u times Road Segment l
 (From SP to EP)] | returns u Road Segment l
29 þrocedure [Add u no. of l to L]
30 SP = p, EV = 0, RV = EV- C*u
31 else if (EV > C) and (RV > 0) do
32 u = floor of EV/C
33 ƒunction [Create s for the first instance at location
 Between SP and P and for other instance at p]
34 þrocedure [Add u no. of s to S]
35 EP = p
36 ƒunction [Create u times Road Segment l
 (From SP to EP)] | returns u no. of l
37 þrocedure [Add u no. of l to L]
38 SP = p, EV = 0, RV = EV- C*u
39 return SourcePointSet S
40 return RoadSegmentSet L

(a)

(b)

AGILE 2015 – Lisbon, June 9-12, 2015

Figure 6: Result of implementation with C = 25

Figure 7: Result of implementation with C = 50

4 Conclusion

We have presented a first solution to extend the bus-based

evacuation problem (BBEP) in a way to overcome the

restrictions of pre-defined source points by a road segmentation

approach which automatically creates these source points. One

advantage of this approach is, that the created source points

could be used as input for existing BBEP algorithms to

optimize the whole evacuation procedure.

The work presented can be seen as a first solution for a very

complex problem, which leaves a number of tasks for future

work. It is clear that the segmentation strategy is depending on

the way how the sequence of roads is treated and also from the

accessibility of the roads. The latter has been neglected in this

paper and the treatment of the sequence of roads also has to be

optimized in future.

References

[1] Burak Eksioglu, Arif Volkan Vural, and Arnold Reisman.

The vehicle routing problem: A taxonomic review.

Computers & Industrial Engineering, 57(4):1472–1483,

2009.

[2] Douglas R. Bish. Planning for a bus-based evacuation. OR

spectrum, 33(3):629–654, 2011.

[3] Horst W. Hamacher and Stevanus A. Tjandra.

Mathematical modelling of evacuation problems: a state

of the art. In Pedestrian and Evacuation Dynamics, pages

227–266. Springer, Berlin, 2001.

[4] Lu, Qingsong, Betsy George, and Shashi Shekhar.

Capacity constrained routing algorithms for evacuation

planning: A summary of results. In Advances in spatial

and temporal databases, pages 291-307. Springer Berlin

Heidelberg, 2005.

[5] Marc Goerigk and Bob Grün. A robust bus evacuation

model with delayed scenario information. OR Spectrum,

36(4):923–948, 2014.

[6] Marc Goerigk, Bob Grün, and Philipp Heßler. Branch and

bound algorithms for the bus evacuation problem.

Computers & Operations Research, 40(12):3010–3020,

2013.

[7] Marc Goerigk, Bob Grün, and Philipp Heßler. Combining

bus evacuation with location decisions: A branch-and-

price approach. Transportation Research Procedia,

2(0):783 – 791, 2014. The Conference on Pedestrian and

Evacuation Dynamics 2014 (PED 2014), 22-24 October

2014, Delft, The Netherlands.

[8] Marc Goerigk, Kaouthar Deghdak, and Philipp Heßler. A

comprehensive evacuation planning model and genetic

solution algorithm. Transportation Research Part E:

Logistics and Transportation Review, 71(0):82 – 97, 2014.

[9] Marina Yusoff, Junaidah Ariffin, and Azlinah Mohamed.

Optimization approaches for macroscopic emergency

evacuation planning: a survey. In Information

Technology, 2008. ITSim 2008. International Symposium

on, volume 3, pages 1–7. IEEE, 2008.

[10] Nezih Altay and Walter G Green III. Or/ms research in

disaster operations management. European Journal of

Operational Research, 175(1):475–493, 2006.

[11] Tanka Nath Dhamala. A survey on models and algorithms

for discrete evacuation planning network problems.

Journal of Industrial and Management Optimization,

11(1):265–289, 2015.

[12] Technische Universität Kaiserslautern, Fachbereich

Mathematik. Transit Dependent Evacuation Planning For

Kathmandu Valley: A Case Study. Report In

Wirtschaftsmathematik (WIMA Report). Kaiserslautern:

Technische Universität Kaiserslautern, 2014.

