
1 Introduction 

Making Geographic Information Systems (GISs) “intelligent” 
is a fascinating idea that has challenged the GIScience 
community for a long time and that, over the years, has been 
tackled from slightly different perspectives. 

It was exactly 20 years ago (in 1995) when Max Egenhofer 
and David Mark introduced the notion of Naïve Geography, 
[8] arguing that “[…] GISs do not sufficiently support 
common-sense reasoning; however, in order to make them 
useful for a wider range of people […], it will be necessary to 
incorporate people’s concepts about space and time and to 
mimic human thinking”.  

A few years later (in 2007), Michael Goodchild coined the 
term Volunteered Geographic Information (VGI) [12] to 
denote the collective effort of gathering, within GISs, spatial 
information naturally acquired by human beings and of 
developing infrastructures to support this trend. Ever since, 
the rise of Web 2.0 allowed for a widespread diffusion of VGI 
projects such as Wikimapia1, OpenStreetMap2, and Google 
Earth3 which, in turn, allowed for partially fulfilling the vision 
of Naïve Geography by bringing GIS to the reach of the 
general public.  

However, GISs still lack, to a large extent, support for 
common-sense reasoning, as confirmed one year ago from 
Stephan Winter (one of AGILE 2014’s keynote speakers) who 
challenged the GIScience community with his enlightening 
talk titled “Towards intelligent geospatial systems connecting 
location and place”.  

The contribution of this paper fits within this challenging 
scope of making GISs “intelligent” by providing them with 
common-sense reasoning capabilities. More specifically, we 

                                                                    
1 http://www.wikimapia.org 
2 http://www.openstreetmap.org 
3 https://earth.google.com 

tackle the challenge of making GISs capable of automatically 
interpreting and resolving spatial queries expressed in natural 
language.  

Drawing inspiration from the research field of Qualitative 
Spatial Reasoning (QSR) [3, 4]—a subfield of AI focused on 
the formalization of relational calculi capable of mimicking 
human spatial cognition—we introduce a family of generic 
spatial queries called Qualitative Spatial Relation Queries 
(QSRQ). We argue that, by encapsulating an arbitrary number 
of formally defined qualitative spatial predicates, these 
queries are valuable candidates to encode spatial descriptions 
expressed in natural language and, therefore, represent one 
possibility to bring GISs a step closer to understanding human 
beings. We also outline a processing pipeline to show how 
spatial descriptions expressed in natural language can be 
encoded into QSRQs and executed in a spatially-enabled 
database management system. 

The remainder of the paper is structured as follows. Section 
2 discusses previous relevant work. The QSRQ family is 
introduced in Section 3 along with a realistic running 
example, a list of different QSRQ’s categories, and a 
discussion on their complexity. Later, in Section 4 we discuss 
the processing pipeline to go from natural language requests 
to query execution, we explain why QSRQs are not supported 
by present databases and discuss how this limitation can be 
overcome. Section 5 draws conclusions and discusses future 
research directions. 

 
2 Related Work 

The goal of providing GISs with common-sense reasoning 
capabilities has a long history. However, previous work along 
this direction has mainly been concerned with queries 
encoding topological relations [3]. Since their introduction in 
[7], topological relations have been continuously and deeply 
investigated and are the only qualitative relations that are 
currently implemented in most GISs. Other work [18] has also 
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been devoted to the development of access methods to 
efficiently resolve topological queries.  

In [9] a system to query spatial databases by sketch is 
described: the topological relations holding between the 
sketched objects are extracted and encapsulated in a SQL 
statement that is sent to the database. 

The idea has been further refined in [19] to extract also 
other types of relations from a sketch but the focus has been 
mainly on deciding which types of relations are reliable, 
rather than on developing a general resolution technique.  

To the best of our knowledge, the most similar approach to 
what is presented in this work is discussed in [23] and [20]. In 
[23] the authors suggest augmenting GIS capabilities by 
providing them with qualitative direction and distance 
operators, while in [20] a spatial SQL-encoding for a number 
of qualitative spatial relation is provided. 

 
 

3 Qualitative Spatial Relation Queries 

A Qualitative Spatial Relation Query (QSRQ) is a query that 
encapsulates a variable number of spatial predicates directly 
expressed as (or mappable onto) qualitative spatial relations 
formalized into one or more qualitative spatial calculi. 

As a running example imagine the following scenario:   
 
 

Figure 1 shows the part of the OpenStreetMap dataset of 
Bremen relevant for this example; icons denote entities of 
interest. The solution to spatial queries of this type consists of 
groups of entities (i) of a certain type and (ii) arranged 
according to a spatial configuration described in terms of 
qualitative spatial relations. In the given example, the entity 
types are apartment, university, train	   station, 
supermarket, and tram/bus	  stop; the qualitative spatial 
predicates are in between, close to, and visible from.  Figure 2 
shows the three configurations of entities that satisfy Jane’s 
spatial query. Note that the bottom right apartment is part of 
two configurations (blue and magenta) as two different parks 
are visible from it. 

Solving a QSRQ is equivalent to searching for all the 
entities in a given spatial dataset that are arranged as 
described in the query. In other words, the qualitative spatial 
relations expressed in the query have to be matched against 
those existing in the spatial dataset. 

The matching problem is as much easier as the number of 
objects uniquely identified in the query increases: if one or 
more objects are specified by either their unique names, 
addresses, or geo-coordinates, the query difficulty scales 
down as the search can be “anchored” on such entities.  

Accordingly, QSRQs can be classified by the degree of 
indeterminacy of the spatial predicates involved: For the sake 
of simplicity, assume the query consists only of one binary 
predicate of the form <object 1, spatial relation, object 2>. 
Also, assume that the spatial relation is taken from a set of B 
elements and that the spatial dataset on which the query is 
executed consists of N objects. Then QSRQs can be classified 
as depicted in Table 1.  

Note that, given the typical cardinality of real geographic 
datasets, one can safely assume that B<<N. Therefore, the 
queries are sorted from top to bottom according to their 
complexity—i.e., the number of relations that have to be 
checked to resolve the query.  

Naturally, a QSRQ can consist of several predicates of 
different levels of indeterminacy. In such cases, the product of 
the complexities of the individual predicates composing the 
query yields the overall complexity. Note also that spatial 
predicates can have an arity different than 2. In such case the 
exponent in the complexity column changes accordingly. 

Figure 1: Part of the OSM dataset of the city of Bremen.

 

Figure 2:  Solutions to the spatial query in the example.

 

Jane, an academic researcher, got a position at University 
of Bremen, Germany. As soon as she arrives in town, one 
of the first things she needs to do is to find an 
apartment to live in. Likely, she has some a-spatial 
constraints that the dwelling has to satisfy—e.g., number 
of rooms, rent price, and whether it is furnished or not. 
Moreover, Jane has the following spatial constraints: the 
apartment must be (i) in between the university and 
the train	  station, (ii) close to a supermarket and 
(iii) to a tram/bus	   stop. Finally, since Jane likes to 
relax by watching the horizon in the evening, she would 
like (iv) a green area, e.g., a park, to be visible from the 
apartment. 



AGILE 2015 – Lisbon, June 9-12, 2015 
 

4 Processing Framework 

 
Figure 3 depicts a processing framework for the automatic 
encoding and execution of QSRQs consisting of 4 phases that 
are discussed in the next subsections. The calculus pool 
represents the key element of the proposed approach: 
basically, it stands for an open number of qualitative spatial 
calculi, each providing a set of qualitative spatial relations that 
can be used in a query. Typically, each calculus focuses on 
one aspect of space, such as topology [7], relative [2] or 
cardinal [13] directions, distance [15], or visibility [11]. Since 
qualitative calculi provide formal definitions for the set of 
spatial relations they address, these can be straightforwardly 
implemented as spatial operators in the database underlying 
the GIS.  

 
 

 
4.1 Interpreting Spatial Descriptions 

The interpretation of spatial descriptions expressed in natural 
language is a challenging task that is actively investigated in 
the research community of Natural Language Processing  
(NLP). One main challenge is due to the ambiguity that spatial 
descriptions expressed in natural language typically carry 
along. Consider, for example, the utterance “the 
supermarket is to the right-hand side of the cinema”. Does 
this mean that the supermarket is to the right-hand side of the 
speaker, as he stands in front of the cinema? Or is it to the 
right-hand side of the cinema, imagining the cinema to have a 
front (the façade with the entrance), a back, a right, and a left 

Table 1: Classification of Qualitative Spatial Relation Queries 
 Spatial Predicate   

Query Name Object 1 Spatial Relation Object 2 Type of Spatial Request Complexity 

Relation 
Checking given given given Does the given relation hold over the given 

objects? O(1) 

Relation 
Retrieval given ? given Which relation does hold over the given objects? O(B) 

Object 
Retrieval 

? given given Which objects are in the given relation with the 
given object? O(N) given given ? 

Object-Relation 
Retrieval 

given ? ? Which relations do hold between the given object 
and the rest of the dataset? O(BN) ? ? given 

Configuration 
Retrieval ? given ? Which objects are arranged according to the given 

relation? O(N2) 

World 
Snapshot ? ? ? How are the objects in the dataset arranged? O(BN2) 

 

 
 

Figure 3: Processing framework for QSRQs; from natural descriptions to query result 
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side? Typically, humans are capable of resolving such 
ambiguities from context [14]. They are also naturally talented 
at understanding from non-verbal signage when the 
interlocutor did not fully understand what has been 
communicated and at adjusting the levels of details 
accordingly [22]. The automatic interpretation of spatial 
descriptions expressed in natural language, therefore, should 
take these issues into consideration. Work on generating 3D 
scenes from textual descriptions is presented, for example, in 
[1, 4], while in [16] an approach to map spatial descriptions 
expressed in natural language onto projective spatial relations 
is discussed.  

However, in the scope of this work we do not focus on these 
challenges. We assume that spatial descriptions expressed in 
natural language are interpreted and that the output of this 
process is (i) a set of variables constrained by (ii) a set of 
spatial predicates. For our running example we have a 
variable for each entity:  
 

a	  ←	  apartment,	  u	  ←	  university,	  	  
s	  ←	  train	  station,	  t	  ←	  tram/bus	  stop,	  	  

m	  ←	  supermarket,	  p	  ←	  park	  
	  

and the following spatial predicates: 
 

between(a, u, s), close(a, t), close(a, m), visible(p, a) 
 
 

4.2 Spatial Query Language Encoding  

As of today, GIS only provide topological and metric distance 
operators. This means that the set of predicates obtained in the 
previous step cannot be automatically encoded in a formal 
query language (say, for simplicity, spatial-SQL). Rather, a 
GIS expert has to take care of (i) interpreting the semantics of 
the predicates and (ii) encoding them into an SQL statement 
making use of the spatial operators available in the GIS.  
Assume that Figure 4 represents part of the logical schema of 
the database that we want to query:  the table Dwelling holds 
houses and apartments, the table Station maintains train	  
stations and tram/bus	   stops and the table Amenities 
stores entities like supermarkets, universities and 
parks. Then, one possible SQL-encoding of the spatial 
predicates obtained above is depicted in Figure 5. 

This is only one of the many possible interpretations of the 
qualitative spatial relation query in our example. This is 
precisely one point we want to emphasize here: since the 
qualitative relations are not defined in current GISs, the way 
they are encoded in a query relies heavily on how they are 
interpreted by the GIS user and on his knowledge about the 
spatial operators available in the GIS. In this particular 

interpretation, for example, the following interpretations are 
done. First, the relation between has been considered satisfied 
by all those apartments (a) located within an ellipse, with 
eccentricity equal to 2 metric units, whose foci are the train	  
station (s) and the university (u)—cf. lines 15-19. 
Second, the qualitative distance relation close has been 
interpreted as “less than 2 units away”—cf. lines 20 and 21. 
Lastly, the visibility constraint has been heavily approximated 
with the condition that no dwelling lies in between the 
searched apartments (a) and a park (p) —cf. lines 22-29.  

The main reason hindering the automatic SQL-encoding is 
that the spatial predicates obtained in the previous step are not 
defined in present GISs. This is where qualitative spatial 
calculi come into play: a qualitative spatial calculus is a 
formal theory derived either from logical or geometrical 
properties that defines (i) a (usually) finite set of relations and 
(ii) inference rules. We are interested in calculi of the second 
category as they provide an explicit geometric interpretation 
of the semantics of the spatial relations.  

We suggest integrating within GISs an open number of 
qualitative spatial calculi that we call a calculus pool. Each 
spatial relation provided by the calculi in the pool is 
implemented in the GIS as a Boolean function of the type 
R(o1,o2,…,on) that verifies if the relation R holds on the 
input geometries—where n is the arity of the relation. Under 
these conditions the SQL-encoding becomes a one-to-one 
mapping that can be done automatically. The result is depicted 
in Figure 6.  

 
Figure 4: Part of the underlying database schema 

 

 
 

Figure 5: a possible SQL-encoding of the example QSCQ 
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The suggested processing framework should also be 
equipped with some mapping ontologies in the eventuality 
that the predicates extracted from the spatial description do 
not coincide with the relations in the pool.  

 
4.3 Qualitative Spatial Relation Query Execution 

A QSRQ can be represented as a qualitative constraint 
network (QCN) [6] taking relations from multiple qualitative 
spatial calculi—i.e., a directed and edge-labelled hypergraph 
whose nodes represent the variables in the QSRQ and whose 
edges represent the qualitative relations among them. The 
QCN representation of the QSRQ corresponding to our 
running example is shown in Figure 7. Similarly, the spatial 
operators corresponding to the qualitative spatial relations 
provided by the calculus pool can be used to compute the 
qualitative relations holding among tuples of objects in the 
spatial dataset to be queried. The result of this operation is 
another QCN representing the whole spatial dataset.  

Hence, solving a QSRQ is equivalent to identifying all the 
occurrences of the QCN representing the QSRQ within the 
QCN representing the dataset. This is a well-known problem 
in graph theory usually referred to as subgraph isomorphism 
or subgraph matching. Practically, a subgraph matching 
consists of assigning each node of the query graph one node 
of the dataset graph in such a way that (i) each node of the 
dataset graph is not assigned to multiple nodes of the query 
graph and (ii) the relations associated to tuples of nodes in the 
query graph match the relations associated to the 
corresponding tuples in the dataset graph. 

If the query graph has n nodes and the data graph has N 
nodes, there are as many possible node assignments as the 
number of n-permutations of N elements without repetitions—
i.e., !!

!!! !
. All such assignments can be represented with a 

tree having as many levels as the number of nodes in the 
query graph. Each tree-node corresponds to a variable 
assignment. Tree-nodes at i-th level assign the i-th query 
graph node each data graph node that has not been assigned in 
upper levels. The root of the tree is located at level 0 and 
corresponds to the empty assignment. Accordingly, a path 
from the root to a leaf represents a complete assignment, but it 
is not guaranteed to be a matching.  

To solve this problem, a modification of the well-known 
Ullmann’s subgraph matching enumeration algorithm [21] can 
be employed: a breadth-first search on the assignment tree 
driven by the arc structure of the query graph with a forward 
checking on the arc labels. The search proceeds by e levels at 
once, where e is the number of nodes of the analyzed arc that 
have not been assigned yet. As the search proceeds, the 
forward checking rules out all the partial assignments that do 
not match with the query-subgraph induced by the arcs 
analyzed so far.  

 
4.4 Result Visualization 

The results of the subgraph matching are subsets of the 
objects in the queried spatial dataset arranged as in the given 
description. They can be returned, for example, as shown in 
Figure 2. 
 

 
5 Conclusions and Future Work 

In this paper, we tackled the challenge of making GISs 
capable of automatically interpreting and resolving spatial 
queries expressed in natural language. We disregarded the 
problems deriving from natural language interpretation and 
focused on the technics that GISs have to implement to 
accommodate for such requests.  

To this end, we introduced the concept of Qualitative 
Spatial Relation Queries: a family of generic spatial queries 
that can accommodate for natural language requests. Unlike 
previous approaches, we drew a processing framework going 
from natural language interpretation down to query execution 
strategy at the database level. One main advantage relies on 
the generalization provided by our framework. Indeed, until 
today, spatial queries encoding different spatial relations have 
been studied independently and optimization techniques have 
also been developed independently. The introduction of a 
generalized query that can encapsulate any type of spatial 
relation and is resolved with a unique method (subgraph 
matching) will also allow for developing generalized 
optimization techniques [10]. Moreover, the presented 
framework allows for neatly splitting the tasks involved in the 
problem and for addressing them individually. 

We did not discuss which qualitative relations are better 
suited to be implemented in GISs. This is work that has to be 
carried out in the future. Similarly, we completely disregarded 
the reasoning capabilities offered from spatial calculi. We 
believe that qualitative reasoning can also be exploited during 
query resolution (as done for example in [3]) to detect 
inconsistent requests but also to optimize qualitative 
representations and to boost the matching process. 

 

Figure 7: QCN representation of the example QSRQ 
 

 

Figure 6: automatic SQL-encoding of the example QSCQ 
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