
 

 

1 Introduction 

The new modes of production and consumption of geographic 

information offer great opportunities for improved near real-

time decision making of individuals and organizations, from 

small daily tasks like where to buy groceries or park your car, 

to critical tasks like coordinating humanitarian crisis response 

and saving lives. As has been argued before [5], there are 

several challenges to tackle before we can harness the full 

potential of geo-social media streams that contain volunteered 

geographic information or user-generated geographic content 

(UGGC). These include the heterogeneity and volatility of 

data formats and sources, the sheer volume of information 

streams that can change rapidly, and the credibility and 

accuracy of the information.  

The main objectives of this short paper are threefold. First,  

to explore the state-of-the-art of comprehensive approaches to 

processing geo-social media streams. Second, to identify the 

potential of crowd-sourced supervised learning to improve the 

handling of UGGC. Third, to develop a conceptual 

architecture based on a methodological review that serves as a 

first step to the implementation and testing of a prototype.  

 

 

2 Processing Geo-Social Media Streams 

Numerous studies investigated UGGC, including event 

detection and information processing for disaster management 

[17], citizen science observations on phenology [2], neo-

cartography [13], health-related inquiries [14], environmental 

monitoring [6], and the automatic description of places [19]. 

Although often producing astonishing and useful results, all 

efforts had their effectiveness reduced by the UGGC’s 

unknown quality - the uncertainty about its uncertainty. 

UGGC often shows areas of data scarcity and data abundance 

or even data redundancy [9, 10]. Its availability seems to 

follow a positive feedback loop, increasing the inequalities 

and generating false data shadows [21]. Further, content does 

not arrive in anticipated packages, but as highly varying 

streams that often need processing in near real-time. UGGC 

formats are heterogeneous, with content commonly being 

unstructured. Finally, the credibility of the source and the 

quality of the data is often obscure, with the source’s level of 

expertise and the motivation for participation only indirectly 

inferable [7], and the origins of inaccuracies manifold, e.g. 

conflicting feature classifications between countries or 

cultures, outdated or wrong information available to the 

contributor, or even malicious intent. In summary, effective 

and efficient information retrieval for UGGC remains a 

difficult task [16].  

A common response to these challenges has been the 

crowdsourcing of curation tasks [23]. Despite encouraging 

results, the curation by human volunteers might not be as 

accurate as once hoped for, and the process itself is not 

replicable [4]. Further, it might not scale up well, with 

organizational overhead increasing exponentially with volume 

of data to be curated. Lastly, it faces problems of 

sustainability, with the risk of external factors (vacations of 

volunteers, remote affected areas) influencing negatively the 

numbers of volunteers. 

A more recent response tries to address these shortcomings 

by employing machine learning techniques to automatically 

select, filter, classify, and enrich UGGC. While unsupervised 

machine learning focuses on detecting hitherto unknown 

patterns, supervised machine learning tries to classify 

unknown data or predict values based on trained (learned) 

classifiers, mostly involving human annotators to create a 

training data set. Challenges include the dependency on data 

quality for unsupervised machine learning [12], overfitting of 

the learning model [3], and diversity of contexts and tasks 

[17]. The following paragraphs briefly describe four existing 

implementations:  

The AIDR system [11] uses adaptive aggregation and 

filtering of Twitter, integrating crowd-sourced labelling to 

learn rules to filter and classify social media information. It 

focuses on the content. It is open source and allows near real-

time processing. However, currently AIDR relies on a single 
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source (Twitter) and does not consider the geographic 

semantics of information.  

The CrisisTracker system as described in [18] is capable of 

detecting events and aggregates and filters social media about 

them, creating stories of clustered social media. However, it 

uses only one source (Tweets) and focuses entirely on the 

content for analysis, disregarding geographic semantics. It 

employs part of AIDR for the Tweet classification and is open 

source. 

The Twitcident [1] aggregates and filters social media 

around events extracted from emergency broadcasting 

services. It semantically enriches the incoming information 

and links it with other external information. However, 

location only seems to influence the filtering of the 

information and not the assessment. It seems that a recent 

extension (Crowdsense) enables it to use several social media 

sources. No source code could be found.  

The GeoCONAVI system [22] is capable of detecting past 

forest fire events. In contrast to the previous systems, it uses 

multiple sources (Tweets, Flickr images), and exploits 

geographic semantics by contextualizing the UGGC 

geographically, and clustering it spatio-temporally. The 

processing is done in near real-time, i.e. high-frequency batch 

processing. The content classification employs decision tree 

learner trained on an event-specific annotated data set. Case 

study results [17] show a low false positive rate (high 

specificity), and a low false negative rate (high sensitivity). It 

does not examine the source, nor does has it been adapted to 

other event types yet: The effort in supervising the learning 

process was substantial, and another context – e.g. different 

languages, geographic scope, or disaster type – would require 

new training and supervision. 

The following section suggests a novel approach (hybrid 

geo-information processing) to combine the strengths - 

adaptability of crowdsourced supervision, and analytic power 

of geographic semantics - of the shown approaches.  

 

 

3 Hybrid geo-information processing 

This review of approaches suggests that a combination of 

geographic analysis and crowdsourced supervised machine 

learning technique have a great potential to improve results.  

The specific challenges are how to (i) link the 

characteristics of geographic information with machine 

learning class labelling and regression, (ii) provide a multi-

modal interface to let human oracles simultaneously label 

instances, (iii) translate the learner models into nomothetic 

principles on geographic semantics.  

Ad (i): Every UGGC instance needs multi-class labelling on 

several attributes: The content type (e.g. call for help, offer for 

help, information on geographic features or processes), any 

locations mentioned and geographic footprints of locations 

and/or events (relevant or affected geographic area), distinct 

event membership (e.g. related to a particular earthquake, or 

emergency situation, or public event), and credibility based on 

a combination of the other class labels (e.g. an request for help 

related to a forest fire event which is coming from a distant 

desert is unlikely to be true). The learners have to deal with 

the specific characteristics of geographic information, i.e. 

spatial autocorrelation, vague boundaries and class 

memberships, and uncontrolled variance.  

Ad (ii): A human oracle has to annotate instances for all 

model classes described in (i), with queries detailed further 

below. The responses will not only modify the learners, but 

also the parameters used for the geographic analysis steps to 

compute footprints and clusters.    

Ad (iii): The resulting models will indirectly encode the 

semantic similarity of geographic places and concepts. To 

allow the results to be shared most effectively, the geographic 

concepts and places will be referenced to the most important 

linked data repositories such as DBpedia and GeoNames 

when possible.  

Previous work has already explored the possibilities of 

using crowd-sourced supervision for machine learning tasks 

within the bigger framework of a Digital Earth Nervous 

System [15]. This study focuses on the specific geoprocessing 

steps show below in Figure 1, which are based on the 

GeoCONAVI approach:  

 

Figure 1: Geoprocessing work flow 

 
Source: The author 

 

After collecting an UGGC instance, the first task can be an 

early content classification if the use case is sufficiently well 

defined so that this step can reduce noise reliably. Then, the 

processor needs to analyse the UGGC for place names 

(toponyms) using natural language processing procedures 

such as named entity recognition. Of particular interest here 

are toponyms that are natural features or vernacular (non-

official). Found toponyms need then disambiguation (since 

many toponyms exist multiple times throughout the world). If 

there are multiple locations mentioned - either in the content, 

or through additional meta-data such as geographic 

coordinates from a global navigation satellite system – these 

need to be synthesized into a geospatial footprint, in order to 

allow geographic contextualization with additional ancillary 

(authoritative) data. Next, the individual content items can be 

grouped (clustered) to detect patterns in space in time, e.g. 

reports on the same incident, in order to remove redundant 

content, or reinforce the credibility of kept content. Finally, 

the instance can be classified according to its relevance to a 

particular topic or use case, integrating the results from 

previous classifications for an assessment of credibility and 

information gain.  

As outlined above, the idea is to use the feedback from the 

crowdsourced supervision to help parameterize the 

geoprocessing tasks. A promising machine learning strategy is 

active learning, in which a learner chooses instances to be 

labelled and presents them to the human annotator [20]. 

Active learning provides an opportunity to maximize the 

impact of human annotation, while allowing the learner to 

remain flexible towards new instances, since it does not 

assume a static pool of instances. [20] reviews several 

possible types of query strategies that are suitable for a 
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geographic active learner. An actual implementation of the 

machine learning tasks mostly likely will utilize at first:   

 Stream-based selective sampling: The learner 

samples an instance and decides to query it or not; 

it is a well-established in practice, e.g. for word 

sense disambiguation. 

 Density-weighted margin-based uncertainty 

sampling: A frequently employed and well-

research strategy, mostly for classification tasks; 

density-weighting avoids the choice of outliers 

which are uncertain to classify, but will not 

improve a model's performance 

 Ensembles of decision trees for classification and 

regression tasks (parameterisation of geographic 

analysis).  

Building on lessons learned in an iterative implementation 

design, later options include testing of support vector 

machines or other more advance machine learning techniques. 

A sample extension of the workflow in Figure 1 is shown in 

Figure 2 below:  

 

Figure 2: Geo-social media processing extended with machine 

learner. 

 
 

Source: The author 

 

The learner improves its performance by asking the 

following example queries:  

 Toponym disambiguation, e.g. by asking “Does 

this [item] talk about [location A] or [location B], 

or none, or both?” 

 Spatial footprint calculation for vague or multiple 

geographies, e.g. by asking “Is this spatial 

footprint for [item] correct? If not, is it too large, 

too small, or wrong shape, or wrong place?” 

 Spatio-temporal clustering, e.g. by asking “Does 

this [item] belong to a cluster named [event] in 

[location]? If not, what’s wrong: Event, Location, 

or both?” 

 

Two challenges are the formulation of the queries, and the 

development of strategies to deal with multiple, potentially 

noisy human oracles 

Following from the above, there are several desirable 

criteria for processing platform of geos-social media streams: 

open source, near real-time processing, multiple sources, 

geographic semantics (cross-validation with and/or 

enrichment from external sources of geographic information), 

extendibility, and flexibility to adapt to new tasks and events. 

Most of the analytical tasks (geoprocessing and active 

learning) could be performed in a stream processing 

framework like Apache Storm. The tasks will have to be 

disaggregated into atomic ones. The crowdsourced 

supervision is possible within the Pybossa framework, 

constantly updating a training data set. It is important to not 

only rely on simple crowdcrafting-style interfaces – use 

everything that's possible, including text messages and 

gamification elements, e.g. MicroMappers 

Preferably, the full workflow should be implemented on a 

cloud computing platform in order to benefit from the cloud 

computing characteristics of scalability, elasticity, reliability, 

and availability. Scalability and elasticity allow a process to 

adapt the varying volume of UGGC streams. Increased 

reliability provides fail-safe mechanism for critical 

applications such as crisis responses. Finally, cloud 

computing platforms improve the availability of 

crowdsourcing tasks by reducing the bandwidth needed by the 

user, i.e. an end-user does not need to have full access to 

UGGC streams s/he is about to help processing. 

 

 

4 Discussion and outlook  

The majority of the systems presented in the previous section 

focus on the content to process the information. However, 

human activities and events take place in geographic space 

and time, and spatio-temporal context of information provides 

valuable clues to the information’s credibility, accuracy, and 

relevance for a particular task.  

All of the approaches presented rely on a combination 

of human and machine intelligence. The involvement of the 

human intelligence varies greatly between systems, however. 

Most require humans to create a set of rules or train a machine 

learning algorithm for filtering and aggregating at the 

beginning (e.g. Twitcident, GeoCONAVI, AIDR), and leave 

the interpretation of the resulting information to humans. 

While Twitcident allows a user to interactively adapt the 

interface and search for related information, only the AIDR 

system currently uses crowd-sourcing to adapt the filtering 

and classification rules during run-time, with promising 

results for the detection of valuable information over the 

course of a changing event.  

Such a combined approach could help to solve some of the 

particular challenges that the inclusion of spatio-temporal 

location entails, as [17] has shown: Geocoding of the geo-

social media streams will remain necessary even if more 

information comes geo-referenced, because the content might 

be about one or more other locations than the information’s 

origin. Geocoding itself faces the problem of toponym 

disambiguation, a task which is complicated because of the 

brevity and lack of structure of much geo-social media [8]. 

Further, many of the geographical references might be in 

vernacular or abbreviated form. Crowd-sourced supervised 

learning shows promise for situational toponym resolution. 

An unresolved problem of any statistical inference process is 

also that a high sensitivity (needed to detect or follow small 
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events) has a reduced specificity as trade-off. Crowd-sourcing 

can help to increase specificity by eliminating false positive 

event clusters (or stories). Finally, a crowd-sourcing effort can 

help to update geographic datasets used in the 

contextualization, introducing a positive feedback loop to 

improve classification and quality assessment. 

Two future implementation strategies emerge: (i) extension 

of AIDR with GeoCONAVI functionality, or (ii) extension of 

GeoCONAVI with facilities to crowd-source the supervision 

of machine learning tasks and the parameterization of analysis 

function. The next step will be to decide on a concrete 

strategy, followed by a step-wise, iterative implementation 

and testing of the geoprocessing tasks described in this paper. 

 

 

References 

[1] Abel, Fabian, Claudia Hauff, Geert-Jan Houben, Richard 

Stronkman, and Ke Tao. 2012. “Twitcident: 

Fighting Fire with Information from Social Web 

Stream.” In International Conference on Hypertext 

and Social Media, Milwaukee, USA. ACM. 

[2] Brunsdon, C., and L. Comber. 2012. “Assessing the 

Changing Flowering Date of the Common Lilac in 

North America: A Random Coefficient Model 

Approach.” GeoInformatica 16 (4): 675–90. 

[3] Butler, Declan. 2013. “When Google Got Flu Wrong.” 

Nature, February 13. 

[4] Camponovo, Michael E., and Scott M. Freundschuh. 2014. 

“Assessing Uncertainty in VGI for Emergency 

Response.” Cartography and Geographic 

Information Science 41 (5): 440–55.  

[5] Craglia, M., F. Ostermann, and L. Spinsanti. 2012. 

“Digital Earth from Vision to Practice: Making 

Sense of Citizen-Generated Content.” International 

Journal of Digital Earth 5 (5): 398–416.  

[6] D’Hondt, Ellie, Matthias Stevens, and An Jacobs. 2013. 

“Participatory Noise Mapping Works! An 

Evaluation of Participatory Sensing as an 

Alternative to Standard Techniques for 

Environmental Monitoring.” Special Issue on 

Pervasive Urban Applications 9 (5): 681–94. 

[7] Flanagin, Andrew, and Miriam Metzger. 2008. “The 

Credibility of Volunteered Geographic 

Information.” GeoJournal 72 (3): 137–48. 

[8] Gelernter, Judith, and Nikolai Mushegian. 2011. “Geo-

Parsing Messages from Microtext.” Transactions in 

GIS 15 (6): 753–73. 

[9] Graham, M., B. Hogan, R.K. Straumann, and A. Medhat. 

2014. “Uneven Geographies of User-Generated 

Information: Patterns of Increasing Informational 

Poverty.” Annals of the Association of American 

Geographers 104 (4): 746–64. 

[10] Haklay, M. 2010. “How Good Is Volunteered 

Geographical Information? A Comparative Study of 

OpenStreetMap and Ordnance Survey Datasets.” 

Environment and Planning B: Planning and Design 

37 (4): 682–703. 

[11] Imran, Muhammed, Carlos Castillo, Ji Lucas, Patrick 

Meier, and Jakob Rogstadius. 2014. “Coordinating 

Human and Machine Intelligence to Classify 

Microblog Communications in Crises.” In 

Proceedings of the 11th International ISCRAM 

Conference. ISCRAM. 

[12] Kanevski, M., A. Pozdnoukhov, and V. Timonin. 2008. 

“Machine Learning Algorithms for GeoSpatial 

Data. Applications and Software Tools.” In 

Proceedings of the 4th Biennial Meeting of iEMSs. 

[13] Liu, Sophia B., and Leysia Palen. 2010. “The New 

Cartographers: Crisis Map Mashups and the 

Emergence of Neogeographic Practice.” 

Cartography and Geographic Information Science 

37 (1): 69–90. 

[14] Mooney, Peter, Padraig Corcoran, and Blazej Ciepluch. 

2013. “The Potential for Using Volunteered 

Geographic Information in Pervasive Health 

Computing Applications.” Journal of Ambient 

Intelligence and Humanized Computing 4 (6): 731–

45.  

[15] Ostermann, Frank O., and Sven Schade. 2014. “Multi-

Sensory Integration for a Digital Earth Nervous 

System.” In Proceedings of AGILE 2014. Castellon, 

Spain: AGILE. 

[16] Ostermann, Frank O., Martin Tomko, and Ross Purves. 

2013. “User Evaluation of Automatically Generated 

Keywords and Toponyms for Geo-Referenced 

Images.” Journal of the American Society for 

Information Science and Technology 64 (3): 480–

99.  

[17] Ostermann, Frank, and Laura Spinsanti. 2012. “Context 

Analysis of Volunteered Geographic Information 

from Social Media Networks to Support Disaster 

Management: A Case Study On Forest Fires.” 

International Journal of Information Systems for 

Crisis Response and Management 4 (4): 16–37.  

[18] Rogstadius, J., M. Vukovic, C.A. Teixeira, V. Kostakos, 

E. Karapanos, and J.A. Laredo. 2013. 

“CrisisTracker: Crowdsourced Social Media 

Curation for Disaster Awareness.” IBM Journal of 

Research and Development 57 (5): 4:1–4:13.  

[19] Ross Purves, Alistair Edwardes, and Jo Wood. 2011. 

“Describing Place through User Generated 

Content.” First Monday; Volume 16, Number 9 - 5 

September 2011.  

[20] Settles, Burr. 2009. Active Learning Literature Survey. 

Computer Sciences Technical Report 1648. 

Madison: University of Wisconsin. 

[21] Shelton, Taylor, Ate Poorthuis, Mark Graham, and 

Matthew Zook. 2014. “Mapping the Data Shadows 

of Hurricane Sandy: Uncovering the Sociospatial 

Dimensions of ‘big Data.’” Geoforum 52 (0): 167–

79.  

[22] Spinsanti, Laura, and Frank Ostermann. 2013. 

“Automated Geographic Context Analysis for 

Volunteered Information.” Applied Geography 43 

(0): 36–44.  

[23] Sui, Daniel, Sarah Elwood, and Michael F Goodchild, 

eds. 2012. Crowdsourcing Geographic Knowledge: 

Volunteered Geographic Information (VGI) in 

Theory and Practice. Berlin: Springer. 

 

 


