
1 Introduction / Motivation

A characteristic of the today’s high-tech world is the vast
amount of stored data. According to Kolb, 90% of the world
wide generated data until 2012, which is 2.5 Exabyte per day,
was generated within the previous two years [6].

Different database systems can be used for the storage, use
and analysis of this growing amount of data. According to Paul
Campaniello from MySQL-Scalability mostly relational
database management systems are used [9].

For the satisfaction of the users significant characteristics of
a database like scalability, performance and latency play a
crucial role. Especially social media projects, like Facebook
and google+, with high user-traffic, use other database
management systems like Apache Cassandra or Google
BigTable. Instead of the relational approach, a Not-only-SQL
(NoSQL) approach is used. NoSQL-databases are increasingly
used to deal with simultaneously high read and write requests
related to large datasets.
In many fields, spatial data fulfills the criteria of fast changing,
large datasets which makes continuous indexing of the data
necessary. It might be expected that future data storage
concepts for spatial data are more often based on NoSQL-
databases more often. Besides querying the growing amount of
spatial data, there is a need for performant analysis.

The paper focuses on the current status of NoSQL-databases
for their usability in geo-applications. Therefore it presents a
comparison between two document-based NoSQL-databases
(MongoDB, CouchBase) and a relational-database
(PostgreSQL). This mainly includes an overview of existing
geo-functionalities as well as several performance tests.

Outline: Section 2 introduces two NoSQL-databases with a
common definition for NoSQL-databases and a classification
based on their main characteristics. Section 3 compares the

differences between the relational data model and the NoSQL-
approach. It describes storage concepts and compares the geo-
functionality between a relational database and the selected
NoSQL-databases. Section 4 describes the test setup and test
procedure for the performance tests. Further it analyzes the test
results. Section 5 summarizes the paper and gives an outlook to
future work.

2 NoSQL-Databases

The term “NoSQL” already exists since 1998. Carlo Strozzi
named an open-source database “NoSQL” to make clear, that
his project does not support any SQL interface [12]. The
underlying concept of his NoSQL-databases waives relations
therefore the expression NoREL would be more appropriate.
Nowadays “NoSQL” stands for “Not only SQL”. It is no
common definition for NoSQL-databases available but Edlich
et.al. [3] point out 7 important characteristics. NoSQL-
databases:

- are not based on a relational approach,
- scale horizontal,
- are often open-source products (although proprietary

products are available),
- don’t need a defined schema,
- provide an API for the integration in other software

products,
- use a decentralized architecture for the easy

replication of data,
- follow the BASE principle (Basically Available, Soft

State, Eventually Consistent).
According to their characteristics NoSQL-databases can be

divided into four groups [5].

Performance investigation of selected SQL and NoSQL databases
Stephan Schmid

University of the Bundeswehr
Werner-Heisenberg-Weg 39

Neubiberg, Germany
stephan.schmid@unibw.de

Eszter Galicz
University of the Bundeswehr
Werner-Heisenberg-Weg 39

Neubiberg, Germany
eszter.galicz@unibw.de

Wolfgang Reinhardt
University of the Bundeswehr
Werner-Heisenberg-Weg 39

Neubiberg, Germany
wolfgang.reinhardt@unibw.de

Abstract

In the today’s high-tech world the amount of data and especially spatial data is growing from day to day. Databases are one of the best ways
to store data. Several database concepts exist for storing data, while the mostly used is the relational database concept. Relational databases
are very well in use for the storage of spatial and non-spatial data. But for example in social media, like Facebook or Twitter, relational
databases often reach their limit of performance. For huge amounts of data and frequent data changes NoSQL-databases can be used. The
paper gives an overview of selected SQL and NoSQL-databases according to their geo-functionalities. In addition it compares two document
based NoSQL-databases with a relational database by several performance tests.

Keywords: NoSQL, Databases, SQL, MongoDB, CouchBase, PostgreSQL.

http://wikis.gm.fh-koeln.de/wiki_db/Datenbanken/SoftState
http://wikis.gm.fh-koeln.de/wiki_db/Datenbanken/SoftState
http://wikis.gm.fh-koeln.de/wiki_db/Datenbanken/Eventually-Consistent

AGILE 2015 – Lisbon, June 9-12, 2015

Key value stored databases: this kind of NoSQL-databases
use a simple schema based on key-value pairs

Column stored databases: data is stored in columns instead
of rows.

Document stored databases: data is not stored in tables but
in documents. Documents refer to structured files, like JSON,
YAML or RDF.

Graph stored databases: data is stored as graph or tree
structures which link the different data aspects.

3 NoSQL-DB’s for geoapplications

The increasing amount and volume of spatial data leads to
new challenges in storing geospatial data. Introduced in the
1970s, the relational database, mathematically based on the
relational algebra, offers ways for structuring, keeping, and
analysing/using spatial and non-spatial data. Therefore a data
model is needed to logically structure the data that is being
stored. These models are the first step and the biggest
determiner of how a database application will work and handle
the information because data is kept in relations. In the early
2000s the NoSQL approach occurred as an unstructured
approach which aim is to eliminate the limitations of strict
relations.

But which NoSQL-databases are capable of storing and
processing geospatial data? According to recently performed
investigations for this paper from the four categories of
NoSQL-databases mentioned in section 2, only the document
stored databases and graph stored databases are widely used for
storing spatial data. For graph stored databases Neo4j includes
a spatial extension which supports all simple feature geometry
types and can be used for route analysis or proximity searches
[1].

This paper concentrates on document-stored databases. At
this point in time there are two widely used open-source
NoSQL-databases which support geospatial data, CouchBase
and MongoDB. When using document based NoSQL
implementations, they don’t use any database schemas or
tables, they use documents to store data (it is expected that the
schema is part of the application layer). Documents are semi-
structured standardized files, like JSON, YAML or XML. The
two investigated NoSQL-databases use JSON (JavaScript
Object Notation) as documents. JSON documents can be
constructed in two different ways:

The first way is nesting documents inside each other. This
option can work for one-to-one or one-to-many relationships.
As an example features can be stored as one feature per
document or in a Feature Collection, where all features are
nested documents.

The second option is to store a reference to another
document. This is done by setting one field in the JSON
document as the reference key, where the value of this field is
the id of the referenced document. NoSQL-databases will only
retrieve the referenced document when the user requests data
inside the referenced document. NoSQL-databases don’t need
an additional collection (table) for joining the data. Referencing
another document is comparable to the foreign key concept of
relational databases.

Spatial data can be stored in GeoJSON which is a format for
encoding a variety of geographic data structures [2]. A
GeoJSON document may represent a:

-Geometry which is a GeoJSON object where the type value
is one of the following ISO/OGC geometry types: "Point",
"MultiPoint", "LineString", "MultiLineString", "Polygon",
"MultiPolygon" or "GeometryCollection".
-Feature which is a GeoJSON object with the type "Feature".
A feature must have a "geometry" and several "properties".
-Collection of features which is a GeoJSON object with the
type "FeatureCollection". A "FeatureCollection" must have
some "features" which are organized corresponding to
"features" as defined above.

With using the GeoJSON data structures the schema free
approach got some restrictions. However, the geographic
representation needs to follow the GeoJSON structure in order
to be able to set a geospatial index on the geographic
information [7]. Indexing is important to speed up query
processing. Different NoSQL-databases use different indexing
techniques.
MongoDB uses currently two geospatial indexes, 2d and
2dsphere. The 2d index is used to calculate distances on a plane
surface. The 2dsphere index calculates geometries over an
earth-like sphere. The coordinate reference system is currently
limited to WGS84 datum. MongoDB computes the geohash
values for the coordinate pairs and then indexes the geohash
values. A precise description for the indexing techniques of the
geohash values is not available at the moment [8].
CouchBase supports indexing of two-dimensional data using
an R-Tree index. CouchBase therefore provides spatial views
which enable a geospatial query using bounding boxes [10]. A
precise description of the indexing techniques in CouchBase is
currently also not available.

Besides the storage and indexing of spatial data, the query
process is an important aspect. For querying spatial data several
geo-functions are available in relational databases. They enable
different queries with geo-context at database level using SQL.
An example for a geo-function is the calculation of a buffer
around a point feature or a line feature.

For the relational-database PostgreSQL there is a special
extension available, PostGIS, for integrating several geo-
functions. MongoDB and CouchBase don’t have a separate
extension at the moment but they support some geo-functions.
Table1 compares the geo-functions of the three databases.

PostgreSQL/PostGIS inherits more than one thousand geo-
functions. Table 1 includes only a selection of them. MongoDB
only supports three geo-functions, $geoWithin, $geoIntersects
and $near. The MongoDB $geoWithin operator corresponds to
the ST_Within function in PostgreSQL/PostGIS, and the
MongoDB $geoIntersects operator corresponds to the function
ST_Intersects in PostgreSQL/PostGIS.

The function $near delivers the next located geometry for a
predefined point. The $near function can be used in
combination with a $maxDistance parameter. In that case
MongoDB delivers all geometries within a certain distance
ordered by the distance. PostgreSQL can calculate this using
the ST_DWithin function. The results however need to be
additionally ordered by the distance.

CouchBase can only query point geometries within a
BoundingBox (BBox). The BBox-function of CouchBase can
be compared to the $geoWithin (MongoDB) and ST_Within

AGILE 2015 – Lisbon, June 9-12, 2015

(PostGIS) functions, however MongoDB and PostGIS can use
different polygons, not only an axial parallel polygon.

Table 1: Geo-Functions of the investigated databases

PostGIS
(selection) MongoDB CouchBase

ST_Within $geoWithin BBOX

ST_Intersects $geoIntersects

 $near

ST_DWithin +
Order by

distance

$near +
parameter
(maxDistance)

ST_Area
…

The overview of the implemented geo-functions show that

PostgreSQL with its extension PostGIS has the most
comprehensive geo-functionalities with more than one
thousand functions. For a complete list of all implemented
functions it is referred to the PostGIS handbook [11].
The two NoSQL-databases have very limited implemented
geo-functions. MongoDB just implements three functions
whereas CouchBase just implements one geo-function.

4 Performance tests for vector data

4.1 Testsetup
Xiao [13] already investigated the performance of storing raster
data in NoSQL databases. This paper concentrates on vector
data, which is to our knowledge not yet available. For the
performance tests a virtual machine with the following
hardware configuration was used:

- 10GB RAM
- 8 CPU 2,5 GHz
- Microsoft Windows Server 2008 R2

This hardware was used for all tested databases, no shared
server system setup was used. To test the performance two
typical queries were defined, one queries attributes of the
objects and the other one calculates spatial data using the geo-
function “within”. In PostgreSQL the requests were performed
using SQL; and the standard PostGIS Gist-Index was used.
MongoDB uses the 2dsphere index while the requests were
taken using JavaScript.
In CouchBase the requests were performed by using the REST
API, because the existing JavaScript API currently does not
support geo-queries. In CouchBase it was necessary to generate
views for requesting the data, a view acts like an index.
Test data from OpenStreetMap with different sizes were
imported into the databases. An overview of the data is given
in Table 2.

Table 2: Test data used from OpenStreetMap
Level Region Size
Subregion Niederbayern 38,9 MB
State Bayern 501 MB
Country Germany 2,1 GB

The tests didn’t investigate the memory usage or the storage

overhead. The data was imported to PostgreSQL using the
GDAL importer. For MongoDB the mongoimport-tool was
used CouchBase doesn’t have any import tool. Therefore it is
necessary to develop a JavaScript-file based on NodeJS. GDAL
offers an easy way to convert the data from OpenStreetMap to
JSON. Hence, the result of that standard data conversion is a
flat structure in the JSON document according to the GeoJSON
specification, no nested or complex structures were used.

All databases are installed according to their standard
installation instructions. In all databases an index for the
geometry is used. PostgreSQL uses the GIST (Generalized
Search Tree)-index, MongoDB uses the 2D-sphere index. For
CouchBase several views on data were created which act like
an index.

The total time for processing the requests was measured
using the Apache JMeter, which is a Java based performance
measurement tool [4].
The following two queries were defined:

1. Queries on attribute-information: One feature of each
geometry type (point, line, and polygon) is selected based on
its attribute (OSM_id). For example, from all point objects the
point with the OSM_ID=1082817686 is selected.

Select * from points WHERE osm_id = '1082817686'

2. Requests using a geo-function “within”

The second query uses the geo-function “within” to calculate
data on database level. It delivers all points within the defined
polygon. The polygon is of the same size for all requests.

Select * from points WHERE
(ST_Within (wkb_geometry, ST_GeomFromGeoJSON('
{

 "type": "Polygon",
 "coordinates": [
 [[12.782592773437498,
 48.38817819201506],
 [12.782592773437498,
 48.54843286654265,
 [13.1231689453125,
 48.54843286654265],
 [13.1231689453125,
 48.38817819201506],
 [12.782592773437498,
 48.38817819201506]]],
 "crs": {
 "type": "name",
 "properties": {
 "name": "EPSG:4326" } } }

')) is true)
For simulating realistic conditions the tests were performed

with an increasing amount of users. Therefore three user
categories were tested:

AGILE 2015 – Lisbon, June 9-12, 2015

- 100 users,
- 250 users,
- 500 users.

In reality the user requests are often conducted with a small
time offset. There is always an unknown time offset between
the requests. Simultaneous requests occur randomly. Therefore
the tests were executed with different time offsets:

- simultaneously, no time offset
- with half second time offset
- with one second time offset

The tests with an increasing number of users and time offset
as well as requests in attribute and geo-functions were
conducted with all datasets and different file sizes. In total this
leads to 486 tests. Figure 3 gives an overview of the performed
tests. Due to space limitations not all results of the tests are
given in the paper.

Figure 1: Overview of the tests

4.1.1 Test results:

In the following the results of the performance tests are
exemplarily shown and discussed. This includes results for
queries on attribute-information as well as queries using the
geo-function “within”.

Queries on attribute-information

Figure 4 shows the response time for requesting attribute-
information of a multipolygon. It compares the three tested
databases. All tests were conducted at the same time.

It gets clear that the response time for multipolygon of the
NoSQL-databases are less than for PostgreSQL. The
PostgreSQL response time increases with the number of users
from 15 sec./100 users to 18 sec./500 users. The response times
for the NoSQL-databases, both MongoDB and CouchBase,
slightly increase from 1 sec./100 users to 4 sec/500 users.
MongoDB and CouchBase behave almost similar while
CouchBase is a little faster. Further test results show that
PostgreSQL always needs more time for answering the queries
than both of the NoSQL-databases regardless of the different
geometry types or size of the datasets.

Figure 2: Queries on attributes-information of multipolygon

Queries using the geo-function „within“

The investigation with the geo-function “within” could not be
carried out using CouchBase. The database crashed regularly.
Figure 5 compares the results for MongoDB and PostgreSQL.
The diagram shows the different datasets and different
geometry types for 100 users. All requests were performed at
the same time.

For PostgreSQL (with standard cache size) the response time
increases with the size of the dataset. Especially for the large
dataset (Germany) the response time reaches 200 seconds for
requests even on point objects. In general queries on points can
be answered faster than on lines and polygons.

MongoDB behaves differently. The size of the dataset
doesn’t play a big role. The response time is almost linear, just
differs by some seconds. In general queries on points can also
be answered faster than on lines and polygons.

Figure 3: Queries with geo-function in PostgreSQL

PostgreSQL has a good performance independently of the

geometry type on the small (Niederbayern) dataset. That
changes with an increasing amount of data. Whereas MongoDB
keeps the performance even with large datasets, PostgreSQL
response time rapidly increases with the size of the dataset. But
for small datasets PostgreSQL performs better when

AGILE 2015 – Lisbon, June 9-12, 2015

considering complex geometry types like lines and
multipolygons. The reason for the better performance of
MongoDB can’t be explained in detail. A reason might be the
the 2D index internals of MongoDB. It calculates geohash
values for the 2D-index, so only a small amount of data has to
be searched before delivering the data. According to the Gist-
index an r-tree needs to be searched, which might be slower
than searching the geohash values.

5 Conclusion and further work

NoSQL databases are a relatively new technology in the field
of geoinformation. There are several different NoSQL-
concepts available. The paper pointed out that there is still a
lack of geo-functionalities within document-oriented NoSQL-
databases. The currently implemented geo-functions support
only very basic operations. Relational databases are still far
superior if the user needs to calculate geoinformation on
database level.

In direct comparison to the performance test of the two test
cases the results show that queries with the use of a geo-
functions take longer than queries on attribute-information,
which was expectable. For requests purely on attribute
information NoSQL-databases are very fast and are superior
compared to relational databases.

For requests with geo-functions NoSQL-databases also
perform very constant. The measured response times vary only
about some seconds for an increasing amount of data. But for
small datasets with complex geometry the relational database
performed better.

In future work it needs to be investigated how the
performance of the NoSQL-databases can be optimized. An
optimization can be achieved by:

- Improvement of the indices
- Enhancement of the JSON schema
- General database improvements (i.e. Cache)

MongoDB usually is optimized for a shared setup over
several servers. This possibility was not investigated in the tests
but may still lead to some performance improvement.

Another important aspect is the investigation of NoSQL-
databases as a basis for Geo Web Services. This includes
different Web Services like WMS, WFS and WCS.

The results presented in the paper are only valid for the
chosen database settings but they clearly show that No-SQL
databases are a possible alternative, at least for querying
attribute information.

References

[1] Baas, B; NoSQL spatial: Neo4j versus PostGIS; TU Delft,
Delft. OTB Research Institute for the Built Environment;
http://repository.tudelft.nl/view/ir/uuid%3Aa47d3b8e-
650a-4152-a310-366db0773848/; accessed: 08.01.2015;
2012

[2] Butler, H. et. al.; The GeoJSON Format Specification;

http://geojson.org/geojson-spec.html; accessed:
08.01.2015; 2008

[3] Edlich, S. et. al.; NoSQL. Einstieg in die Welt

nichtrelationaler Web 2.0 Datenbanken; Carl Hanser
Verlag, München, XIV; 289 S.; ISBN: 978-3-446-42355-
8; 2010

[4] Halili, E; Apache JMeter: A practical beginner's guide to

automated testing and performance measurement for your
websites; Packt Publishing Limited, Birmingham; ISBN
9781847192950; 2008.

[5] Hecht, R., Jablonski, S; NoSQL Evaluation. A Use Case

Oriented Survey; In: Proceedings of CSC ’11
International Conference on Cloud and Service
Computing; ISBN 9781457716355; 2011

[6] Kolb, L; NoSQL-Datenbanken. Kapitel 1: Einführung;

Universität Leipzig; http://dbs.uni-
leipzig.de/file/NoSQL_SS14_01_Intro.pdf; accessed:
27.08.2014; 2014

[7] MongoDB, Inc.; 2dsphere Indexes;

http://docs.mongodb.org/manual/core/2dsphere/;
accessed: 27.08.2014; 2011-2015

[8] MongoDB, Inc.; Geospatial Indexes and Queries;

http://docs.mongodb.org/manual/applications/geospatial-
indexes/; accessed: 27.08.2014; 2011-2015

[9] MySQL Scalability; The state of open source Database

Markets: MySQL leads the way;
https://www.scalebase.com/the-state-of-the-open-source-
database-market-mysql-leads-the-way/; accessed
14.01.2014; 2014

[10] Ostrovsky, D; Rodenski, Y; Pro Couchbase Server;

Apress; 2014

[11] PostGIS Development Group; Postgis Manual;

http://postgis.net/docs/index.html; accessed: 14.01.2014;
2014

[12] Strozzi, C; NoSQL - A Relational Database Management

System; http://www.strozzi.it/cgi-
bin/CSA/tw7/I/en_US/nosql/Home%20Page; accessed:
14.01.2015

[13] Xiao, Z; Liu, Y; Remote sensing image database based on

NOSQL database; In: 19th International Conference on
Geoinformatics; Shanghai, China; S. 1–5; 2011

