
1 Introduction 

Comprehensive knowledge about the mobility patterns 
of a city’s population is important for both industry and 
science research. It is of particular interest for the 
advertising industry for determining performance 
values of posters and billboards. Movement profiles of 
subgroups in traffic can therefore be a valuable data 
input. 

The data used to evaluate outdoor advertising is 
usually sourced in studies in which test groups are 
interviewed about their mobility behaviour or tracked 
by special GPS sensors. Those studies are generally 
associated with very high costs. For this reason most of 
the studies span only a short period of time and cover a 
small amount of participants. Alternatively, a large 
amount of mobility data can be derived from 
nationwide sensors, such as the mobile phone network. 
This is often problematic because of legal issues and 
can require a large effort to acquire the datasets. 

Local sensor networks using Bluetooth or Wi-Fi can 
be a good and comparably low-cost alternative. This 
approach commonly places stationary Bluetooth and/or 
Wi-Fi sensors at geographically distributed positions, 
for example covering important places in a city. The 
sensors are capable of recording Bluetooth- and Wi-Fi 
signals sent by other (mobile) devices in their local 
surroundings. Those devices can be smartphones, 
headsets of passing pedestrians and vehicles. The 
Bluetooth sensors are connected via a mobile phone 
network to a central analysis server that collects all 
sensor readings. 

As a proof of concept, we have established a network of 
Bluetooth sensors in an area of the city of Bonn, 
Germany in July and August 2014. The sensors were 
installed in outdoor advertising billboards. The 
placement was preceded by intense talks and 
negotiations about security and privacy aspects of the 
project since those billboards are located in public 
spaces. In the following sections we show the potential 
that is hidden in this sensor data, especially when it 
comes down to deriving mobility criteria like 
movement patterns.  

So far, only a few works exist on experiences 
collecting Bluetooth data over a whole city. Mainly the 
data is gained on greater events like festivals, sport 
events or in closed areas like airports and shopping 
centres [1,2,4,5,10,12,]. We extend this previous work 
like Versichele et al in [13] by setting up a 
decentralized sensor network in a big city in Germany 
and focus on new approaches for detecting mobility 
patterns via Fourier analysis. Thus we want to answer 
the question – is the acquired data valid for a realistic 
representation of traffic activity and movement 
patterns? Can this data be used on the one side as an 
input for agent based traffic simulation and on the other 
side be used by the advertising industry [3]. 
The remainder of this paper is structured as follows: 
section 2 - describes the measurement scenario, 
methods as well as the data acquisition process. Section 
3 - describes the data, the data aggregation, and the 
analysis for commuter detection. Section 4 - 
summarizes our lessons learned. 
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Abstract 

A Bluetooth sensor network was built up in the city of Bonn to measure Bluetooth MAC-addresses. The results of the 
acquired data are separated on a macro level and mobility patterns. We have collected nearly 5 million data points from 14 
distinct stationary sensors over a period of 1 month and recognized over 85.000 unique devices. We show that the data is 
sufficiently dense to detect commuter patterns based on a Fourier analysis. In addition, we discuss limitations found in the 
dataset and present lessons learned. 
Keywords: Bluetooth tracking, Fourier Transformation, mobility patterns, geo-sensor network, data-acquisition 
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2 Scenario and methods 

The objective of our approach is to use a reliable sensor 
system based on a single-board computer that is able to 
collect Bluetooth data autonomously and sends the data 
to a server via a mobile phone network. Furthermore, 
the system must have a maintenance interface that is 
secured with a public key infrastructure. This is 
especially important when it comes to sensor 
placements in public spaces since the data has to be 
protected from illegal external access. In addition, 
various reliability and availability mechanisms are 
implemented in order to receive continuous sensor data. 
For example, a disconnection of the UMTS stick has to 
be intercepted, and after a reconnection the sensor has 
to send the incurred data to the server. The whole 
process has to run autonomously since the sensor’s 
accessibility is limited once it is installed within the 
billboard. 

 
2.1 Acquiring  data 

The Bluetooth USB-dongle of the sensors receives the 
Bluetooth data during their „Inquiry State“. The 
received signals are converted to a readable format, 
recorded in a text file and periodically transferred to a 
server. The complete process is presented in Figure 1. 
The recording progress consists of three parts. First the 
sensor receives the Bluetooth signal and passes the 
acquired data to the second part. This second part pre-
processes the measured data using a Java application 
and shell scripts running on the sensor. In this part the 
formatting, anonymizing, logging and transmitting of 
the data records are solved. The third part is the 
receiving of the formatted data records, saving them on 
an external server and storing the data until it is 
transmitted to an internal server. 

 
 
 

Figure 1: Data acquiring process 

 
 

2.2 Sensor Placement 

A network of Bluetooth sensors was established in the 
street network of the city of Bonn. The dependence on a 
permanent power supply restricted the potential 
positions. Cooperating with a German outdoor 

advertising company, a solution was found to place the 
sensors within their outdoor advertising billboards.  
Considering the relevancy of measured vehicle or 
pedestrian frequencies, the locations of the billboards 
had to meet certain criteria. They had to be located 
close to the street with no construction sites in the 
surrounding area and positions at radial streets were 
preferred chosen. Thus was a logical step to maximize 
the total amount of detected devices and compensate the 
small amount of sensors in relation to the big street 
network. Furthermore, a signal attenuation of Bluetooth 
caused by the material characteristics of the billboards 
and a low reception quality of the mobile network were 
additional reasons for exclusion. Every sensor was 
tested to ensure Internet connectivity and the scanning 
range of the Bluetooth dongle. The complete selection 
process resulted in the qualification of 12 potential 
positions for setting up the sensors. Figure 2 shows the 
chosen positions and the unique IDs of the Bluetooth 
sensors on a map. The outer sensors 3,6,10,11 and 17 
seen figure 2 are the limits of the inner city.  While 
sensor 5 and 14 are installed at the radial street to 
employment zone. 

 
Figure 2: Locations and unique Ids of all Bluetooth sensors in 

Bonn. 

 
 

3 Analysis 

In the following we describe some basic approaches for 
analysing the data that were recorded from 17th of July 
until 18th of August 2014. During this 4-weeks period 
about 5 million Bluetooth inquire messages, consisting 
of 85.933 unique MAC addresses and 263 different 
device types, were recorded. The whole period fell 
within the summer holidays in North Rhine-Westphalia 
where the total amount of traffic is usually reduced. The 
largest numbers of tracked devices were Audio/Video 
hands-free devices and cellular phones. The sensors 
produce daily load curves very similar to those 
generated by induction loop counting [4,5,7] and other 
works in the field such as [4,7]. The MAC address 
count of two exemplary sensors for the period between 
the 17th of July 2014 and 12th of August 2014 is 
displayed in the following charts (see figure 3).  
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Figure 3: Daily load curve of two sensors for weekdays and 
the weekend 

 
 

Here the numbers of MAC-addresses were summed up 
for each sensor. Additional validation data was 
available from a similar Bluetooth dataset, collected in 
the city of Cologne in the first half of 2013 for about 6 
months. Both cities are about 20km apart. The sensors 
in Cologne were placed on high-frequented streets such 
as sensor_10 and sensor_6 in Bonn. Further, for the 
Cologne dataset induction loop measurements exists. 
Thus we were able to validate the plausibility of 
Bluetooth measurements.  The daily load curves of the 
induction loop strongly correlates with the daily load 
curve of the Bluetooth dataset. The ratio between 
Bluetooth and induction loops is about 7-10%. It has 
been shown in previous work that this is sufficient to 
represent a realistic amount of people and vehicles 
[1,4,5,3]. 

For data aggregation every record of a scanned device 
at a sensor is saved as a separate dataset with it’s "first 
seen" and "last seen" record, respectively. In this way 
each dataset represents a certain time span of a 
Bluetooth device at a sensor. The raw data is then 
aggregated depending on dwelling times. Till this point 
we used an algorithm similar to the one used in [10].  
One further part of this process was to define a stay of a 
MAC-address. A stay is the time that a person or 
vehicle with an active Bluetooth device lasts at a sensor. 
Because of the signal attenuation of Bluetooth caused 
by the material characteristics of the billboards, a 
threshold was defined. Thus it was necessary to identify 
the length of an inquiry scan at each sensor. This was 
accompanied by finding the median duration of the next 
appearance of the same MAC-address at sensor. This 
duration time lies between 11 seconds and 40 seconds. 
Afterwards the determined appearance was used to 
aggregate the raw dataset. Finally, aggregated datasets 
are formed if the temporal difference of two 
consecutive datasets in the raw data ("last seen" of the 
prior and "first seen" of the latter) is less than the 
determined threshold of a sensor. This helped us to 
reduce the nearly five million raw datasets to about 

340.000 aggregated datasets that are used in the 
following analysis. 
Since an individual person in a city is not continuously 
moving, the duration of a regular working day would be 
another interesting threshold to segment the behaviour 
of a MAC-address (which stands for a person). This 
leads to the question: what is the distribution of another 
appearance in the sensor network? A first approach was 
to have a closer look at the daily load curves and point 
out the increase of activity in the graph. In figure 3 we 
clearly see that the amount of “activity” increases at 7 
am and decreases between 7 pm and 8 pm.  Hence the 
first conclusion would be to declare the time out of 
home for approx. 12 hours, from home to work and 
back. To find a more precise definition of the time out 
of home, the data set was grouped hourly by the next 
appearance of MAC-address in the sensor network. This 
hourly aggregation of hourly recurrent MAC-addresses 
results in figure 4 and will form the basis for further 
analyses. 
 
Figure 4: Recurrent MAC-addresses at all sensors for Cologne 

and Bonn

 
Figure 4 shows that at 9-hours and 15-hours a peak of 
recurrent MAC-addresses exists. The 15-hour peak has 
the highest amount of MAC-addresses and defines the 
length of time outside home. The query was applied to 
the Cologne dataset and to the Bonn dataset. The y-axis 
shows the percentage of recurrent MAC-addresses after 
a specific time. The x-axis shows the time when a 
MAC-address has its next appearance in the network. 

 
3.1 Commuter detection 

A closer look to the graph in figure 4 shows a distinct 
distribution over a period of time and the predictability 
of mobility. We would like to highlight the local 
extremes in the graph in figure 4 especially the 
recurrent of MAC-addresses after 24-hours and 168-
hours (one week). Furthermore many people pass a 
sensor again after exactly two days, three days, etc. - so 



AGILE 2015 – Lisbon, June 9-12, 2015 
 

it seems that they pass a location after a given time 
interval. This periodic behaviour is interpreted as a 
commuter interval.  
For a better overview about the commuter interval, the 
time series is transformed to the frequency domain.   
Because of discrete time values we used a DFT 
(discrete Fourier transformation) shown in equation 1 
[8]. The DFT was applied to the signals of Bonn and 
Cologne, with about 676 hourly samples, referred to the 
one-month measuring period. The resulting 
characteristics are shown in figure 5 for Cologne 
validation data and Bonn. Both patterns show similar 
characteristics on the y-axis the amplitude of the hourly 
period is represented in dB and on the y-axis the 
frequency is represented in 1/hour.  
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Figure 5: recurrent MAC-addresses at all sensors for Cologne 
and Bonn transformed to the frequency domain 

 

The first peak of the pattern lies at 1/24-hours. This 
means, that those signals reappear after a 24-hour 
interval. The next interesting peaks are at 12-hours and 
8-hours. These are interpreted as the length of time 
outside home, in contrast to the time series where the 
length of time outside home was interpreted at 9-hours 
respectively 15-hours. Based on this result a new 
threshold for the time out of home is found. In 
adjustment with the daily load curves in figure 3 and 
from [5,9], the 12-hour interval shows the best daily 
mobility time from home to work and back. For 
description of a single sensor we will have a closer look 
to the recurrent behaviour of MAC-addresses at each 
sensor. 

 
Figure 6: Recurrent MAC-addresses at a single sensor for 
Cologne and Bonn transformed to the frequency domain

 
The sensors in Bonn are marked with sensor_(bnX) and 
the Cologne sensors are marked with sensor_(cnX). The 
red dotted marks show the percentage of recurrent 
MAC-address, from left to right after 9 hours, 15 hours, 
24 hours, 28 hours and 168 hours. The two graphs in 
figure 6 are notable: while graph (a) shows the sensors 
with less amounts of recurring MAC-addresses, the 
graph in (b) features the sensors with a high amount of 
recurring MAC-addresses over time. Unfortunately, the 
sensors in graph (b), have a similar behaviour to the 
recurring MAC-addresses in the whole network shown 
in figure 4. It can be expected for this representation of 
data that the higher the total amount of recurrent MAC-
addresses, the higher the significant predictability of 
mobility behaviour can be extracted. Transforming the 
single time series of the specific sensors to the 
frequency domain, the same equation (1) used for the 
overall sensors is valid. The result is shown in figure 7 
for the single sensors. With respect to the similarity of 
the sensors, the frequency domain shows that the 
obvious similar distribution of recurring MAC-
addresses is not valid for all sensors. Here we must take 
into consideration that some sensors suffered from 
technical malfunctions during the experiment. The 
successful running sensors show a similar behaviour at 
corresponding frequencies. At closer glance one can see 
that the 12-hour period is not identifiable. The 24-hour 



AGILE 2015 – Lisbon, June 9-12, 2015 
 

pattern can be seen, however the 8-hour period is only 
still partially observable. As already mentioned, this can 
be seen for the highly frequented sensors on radial 
streets such as sensor_cn1, sensor_cn2, sensor_cn4, 
sensor_cn6, sensor_bn9 and sensor_cn11. 
 

Figure 7: recurrent MAC-addresses at single sensors for 
Cologne and Bonn transformed to the frequency domain 

 

 
3.2 Similarity 

For the advertising industries a differentiation of 
locations is especially interesting. In figure 6 a daily 
commuter percentage of 13% < 60% can be observed.  
The sensors in figure 6 (b) clearly show a minor 
percentage of the commuters, 0.5% < 4.8%. It should be 
noted that sensors in figure 6 (a) comprise a small 
amount of total number of measured MAC-addresses. 
As a similarity measure to compare the sensors, a 
covariance matrix is built. The function for the 
correlation coefficients of the time series is shown in 
equation 2. The coefficients are quantification factors to 
detect the similarity of sensors. 
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, Y  is  a  time  series  value, σ Y is  variance 

(2) 
To find the major similarities among all sensors, the 
observed time series of the recurrent MAC-addresses is 
cut at 183 hours. This was a compromise to cover up 
most of the sensors. The threshold at 183 hours has to 
be used, because till this point the best quality of the 
derived recurrent MAC-addresses occurs. Afterwards 
the time series is transferred to a covariance matrix.  
The following analysis is focused on the similarity of 
the time series leading to a classification of the sensor 
locations. The result is shown in table 1. The dark grey 
shaded elements of the matrix are all coefficients with a 
correlation of two series >90%, grey shaded shows all 
correlation >80%<90% and the light grey elements all 
correlation >70%<80%. All series with a correlation 
>90% have a similar characteristic in the frequency 

domain. Table 1 shows that the measurement time has 
an essential meaning for this analysis. The underlying 
measurements for about four weeks were only sufficient 
to detect commuter behaviour for one week. Also the 
precision of the detection depends on the total amount 
of measured MAC-addresses. This becomes particularly 
observable through the calculated correlation 
coefficient of the overall series from the Cologne and 
Bonn dataset, which is exactly one. 
The elements of the correlation matrix can be used as a 
feature for deeper analyses. A first approach would be a 
segmentation of the time series based on daily load 
curves. In this way a classification can succeed for 
sensors and street types.  
 
Table 1: covariance matrix of the sensors 
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Sensor_cn1	   1	   0.98	  0	   0.9	   0.97	  0.75	  0.79	  0.37	  0.76	  0.99	  
Sensor_cn2	   0.98	  1	   0.11	  0.96	  0.98	  0.84	  0.89	  0.52	  0.77	  0.99	  
Sensor_bnPI1	   0	   0.11	  1	   0.33	  0.22	  0.27	  0.44	  0.63	  0.5	   0.1	  
Sensor_bn9	   0.9	   0.96	  0.33	  1	   0.96	  0.91	  0.96	  0.72	  0.83	  0.95	  
Sensor_bn6	   0.97	  0.98	  0.22	  0.96	  1	   0.8	   0.87	  0.52	  0.88	  0.99	  
Sensor_bn4	   0.75	  0.84	  0.27	  0.91	  0.8	   1	   0.93	  0.83	  0.63	  0.81	  
Sensor_bn3	   0.79	  0.89	  0.44	  0.96	  0.87	  0.93	  1	   0.83	  0.73	  0.85	  
Sensor_bn11	   0.37	  0.52	  0.63	  0.72	  0.52	  0.83	  0.83	  1	   0.52	  0.48	  
Sensor_bn14	   0.76	  0.77	  0.5	   0.83	  0.88	  0.63	  0.73	  0.52	  1	   0.82	  
Sensor_bn10	   0.99	  0.99	  0.1	   0.95	  0.99	  0.81	  0.85	  0.48	  0.82	  1	  

 
4 Conclusions and lessons learned 

As a result of the observation and initial basic analysis 
of the collected data we have showed that a Bluetooth 
sensor network in an area of a city is suitable to detect 
mobility patterns of commuters. The data is valid for 
other measurements as seen from the previous 
experiments. The acquired daily load curves resemble a 
plausible result and support the data quality as in 
[2,4,5,7,12]. However, the choice of the Bluetooth 
dongle and the sensor positioning are crucial. The 
results from measurements collected with different 
dongles clarified this. A more powerful industry dongle 
with a higher send/receive energy consumption 
recognized about 52.618 devices and a customized 
dongle about 37.181. They were both placed at the 
same position and had the same range to the street. 
The results show that a solid sensor network can be 
constructed even with limited resources. The collected 
datasets allow for validation of agent based simulation 
systems by using them as training data for a simulator. 
Signal analyses display regularities in the data for 
recurring MAC-addresses. The time of measurement 
has to be extended to improve the result quality as seen 
in the signal course in the frequency range measured for 
the Cologne data. Frequencies for recurring MAC-
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addresses can be picked directly from the graph, where 
it was just partially possible for the Bonn data at highly 
frequented sensors. Furthermore, commuter intervals 
could be used for defining a limit value of the length of 
time outside home. Additionally, by transforming the 
recurring MAC-Addresses from time domain to 
frequency domain, a distinction can be made between 
sensors that show realistic mobility patterns and sensors 
with no characteristic signal sequences or a divergence 
in the compared correlation coefficients. This is 
indicated in the frequency domain (figure 7), for the 
characteristic signal sequences. Furthermore the sensors 
with realistic mobility patterns strongly correlate to 
each other (table 1). Finally the ratio between the 
amount of measured MAC-addresses and the detected 
commuter intervals are indicators of realistic behavior. 
Hence those sensors with a less characteristic signal 
sequences have no identifiable commuter intervals 
(figure 7) and hardly correlate to other sensors (table 1). 
It has to be considered that some sensors delivered data 
only for a short period of time due to hardware failures. 
By developing correlation coefficients for the sensors, 
similarity measures for further analyses exist. The 
derived groups of sensors can be used to deduce the 
reasons for high correlations especially by comparing 
street types, traffic frequencies, locations and daily load 
curves. 
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