
1 Introduction 

The quantitative and spatial analysis of complex human-

environment and ecological systems are often focused on 

predicting spatial variables [10]. For accomplishing these 

tasks diverse algorithms have been widely used in the 

literature [3, 4, 8, 10, Li]. The growing availability of spatial 

data and the high complexity of the coupled human-natural 

system [14] pose an added challenge to spatial analysis. 

Machine learning (ML) for its part, is rapidly gaining 

popularity for modeling complex phenomena and mining 

large datasets. In order for a modeling algorithm to be 

spatially adept, the residuals of a regression analysis should 

not exhibit clustering. In fact, the presence of spatial 

autocorrelation in the residual of a statistical model can lead 

to an erroneous interpretation of the results [11]. 

Unfortunately, as most ML algorithms are not designed to 

handle spatial data, there is no guarantee that the results of an 

analysis will be satisfactory from a geographic point of view; 

furthermore, despite the importance of its effects, the 

implications of spatial association in geographic modeling 

remains unclear [11]. 

In this paper we explore the performance of selected well-

established ML algorithms for the regression of spatially 

autocorrelated data. We also compare the performance of ML 

algorithms against the spatial algorithm generalized least 

squares (GLS).  Our research question is hence: How do 

different ML algorithms perform on spatially autocorrelated 

data?  

 

2 Materials and Methods 

We approach our research question by analyzing the 

performance of regression algorithms on synthetic datasets, 

which show a systematic variation on the degree of 

autocorrelation. 

 

 

2.1 Synthetic data 

We built a collection of simulated raster images (50 x 50 

pixels) with varying degrees of spatial autocorrelation loosely 

following the approach on [2].  These raster maps can be seen 

as an unconditional gaussian simulation based on a defined 

kriging [16] structure.  In order to obtain a variation of the 

level of clustering in the data we allowed the parameter 

“nugget” in the variogram to progressively account for 1%, 

10%, 20%, 30%, 40% and 50% of its Sill.  We kept the range 

parameter fixed to 15 pixels (~1/3 of the side of the generated 

surfaces). For each nugget value we generated 23 random 

simulations of clustered raster maps; 13 rasters to be used as 

regression coefficients and 10 as explanatory variables in a 

regression model that simulates a given spatial process.  

In order to simulate vector data we generated a layer of 200 

Voronoi polygons from a two dimensional (X,Y) random 

uniform seed.  We intersected each polygon with each raster 

created and extracted the mean value of the intersecting pixels 

(fig. 1). 

The regression coefficients and explanatory variables, now 

aggregated in polygons, were combined to generate a 

synthetic response variable by using the following expression: 
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Abstract 

Machine learning is a computational technology widely used in regression and classification tasks.  One of the drawbacks of its use in the 

analysis of spatial variables is that machine learning algorithms are in general, not designed to deal with spatially autocorrelated data.  This 
often causes the residuals to exhibit clustering, in clear violation of the condition of independent and identically distributed random 

variables.  In this work we analyze the performance of some well-established Machine Learning algorithms and one spatial algorithm in 

regression tasks for situations where the data presents varying degrees of clustering.  We defined “performance” as the goodness of fit 
achieved by an algorithm in conjunction with the degree of spatial association of the residuals. We generated a set of synthetic datasets with 

varying degrees of clustering and built regression models with synthetic autocorrelated explanatory variables and regression coefficients.  
We then solved these regression models with the algorithms chosen.  We identified significant differences between the machine learning 

algorithms in their sensitivity to spatial autocorrelation and the achieved goodness of fit.  We also exposed the superiority of machine 

learning algorithms over generalized least squares in both goodness of fit and residual spatial autocorrelation.  Our findings can be useful in 

choosing the best regression algorithm for the analysis of spatial variables. 
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𝑦𝑛 = 𝑥1 ∗ 𝛽1 + 𝑥2 ∗ 𝛽2 + ⋯ + 𝑥10 ∗ 𝛽10 + 𝑥1 ∗ 𝑥2 ∗ 𝛽11 + 𝑥3

∗ 𝑥4 ∗ 𝛽12 + 𝑥5 ∗ 𝑥6 ∗ 𝛽13   (1) 

Where: 

𝛽1 … 𝛽13: Synthetic rasters of regression coefficients 

𝑥1 … 𝑥10: Synthetic rasters of explanatory variables 

 

Figure1: Raster map (up) and aggregated vector map (down) 

for nugget = 1%. 

 
 

All synthetic data was generated in R with the library 

”gstat” [17]. The ML algorithms were implemented via 

“Caret” in R and the optimization was done through standard 

grid search with repeated 5-fold cross validation. GLS was 

implemented via “nlme” in R.  The estimates for the ML 

algorithms were obtained through repeated 5-fold cross 

validation while the GLS solution was calculated with 

standard 5-fold cross validation. 

 

2.2 Machine Learning Algorithms 

For our study we selected the following well-established ML 

algorithms: Random Forest [5], Neural Network [19], Neural 

Network with PCA [19], Cubist (Improvement on M’5 

algorithm by [18]), Partial Least Squares [7], Gradient 

Boosting Machine [13] and Support Vector Machines [9].  

Also, we used GLS [6] as a spatial algorithm for comparison 

purposes. 

Table 1 summarizes the algorithms used, the optimization 

parameters, and an example of its practical use in analysis of 

spatial variables. 

Our criteria for assessing the performance of these 

algorithms are based on two different factors.  Firstly we 

consider the goodness of fit reached by each algorithm in 

terms of R2 and Normalized Root Mean Square Error 

(NRMSE).  Secondly we measure the degree of Spatial 

Autocorrelation on the residuals of the regression as delivered 

by the Moran’s I statistic. 

 

Table 1. Algorithms used, optimization parameters and 

references in the literature. 

 

3 Results 

In general the algorithms Cubist, SVM with Radial Basis 

Function, NNET and NNET with PCA seem to perform better 

than the rest in terms of R2 and NRMSE.  On the other hand, 

GLS is the worse performer in R2 and NRMSE.   

Figures 2, 3 and 4, at the end of this document, summarize 

the results achieved. 

Tables 2, 3 and 4 show the best and worse performer in R2, 

NRMSE and residual SAC respectively.   

As expected, goodness of fit is best when clustering in the 

data is highest. This reveals a drawback in the cross validation 

strategy that might lead to an overestimation of the quality of 

the regression, which is especially problematic when 

assessing the transferability of the models [21, 12].  

The R2 values range from 0.828 (best) to 0.510 (worst) 

while the NRMSE is between 0.077 (best) and 0.137 (worst).  

SVMRBF, NNET, NNETPCA and Cubist perform 

consistently well, especially under conditions of high 

clustering in the data. GLS on the other hand, performs worst 

and exhibits larger variances. 

In terms of resistance to spatial autocorrelation, it is 

interesting how again the algorithms Cubist, SVM with Radial 

Basis Function, NNET and NNET with PCA seem to perform 

better than the rest.  The spatial benchmark GLS, on the other 

hand, delivered again the worst resistance to residual SAC. 

The differences in goodness of fit between the algorithms 

tested are more notorious in situations of higher clustering 

(Nugget = 1% and 10%).  As random noise is added to the 

datasets -as an increase in the nugget parameter- the variances 

of the metrics calculated increase making the tested 

algorithms more comparable.  Interestingly, the differences in 

resistance to residual SAC seem to remain clear even in 

conditions of relative high randomness in the data (Nugget = 

40%). 

Algorithm Optimization 

Parameter 

References in 

the Literature 

RF Mtry [20] 

NNET Size, decay [11,15] 

NNET PCA Size, decay [15] 

Cubist Committees, 

neighbors 

[20] 

SVM with linear 

kernel 

C  [15,20] 

SVM RBF C, sigma [15,20] 

PLS Number of PC [15] 

GBM ntree [1] 

GLS  [3] 
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Table 2. Best and worst R2 for different values of the 

nugget parameters. 

 
 

Table 3. Best and worst NRMSE for different values of 

the nugget parameters. 

 

 

Table 4. Best and worst residual SAC for different values 

of the nugget parameters. 

 

 

Our findings clearly show differences in performance of the 

tested ML algorithms for different degrees of spatial 

autocorrelation.  This goes inline with earlier studies that have 

applied different ML algorithms for one regression task [11, 

12]. However, what is new with this study is that we 

systematically assess goodness for different degrees of spatial 

autocorrelation. 

Also, our findings reveal that the spatial method GLS 

delivers the worst performance in all the assessed situations.  

We are aware, however, of some limitations in our study. 

First of all, we rely on synthetic data where the variogram 

model allows in theory, to control the amount of spatial 

autocorrelation that the data will exhibit.  However when 

measuring the actual amount of spatial autocorrelation in the 

resulting simulated data, the differences for different nuggets 

are minimal, especially for Nugget = 1% and 10% (Table 5). 

 

Table 5. Calculated Moran’s I per varying nugget in the 

synthetic data 

 

 

Second, we acknowledge that the k-fold cross validation 

strategy might tend to deliver overly optimistic results as the 

records selected for testing are (at random) in the vicinity of 

the records selected for training, which causes unwanted 

correlations in the results leading to poor transferability of the 

models. 

Third, our synthetic polygons are generated through a 

random uniform seed and therefore, its geometric structure 

might not faithfully represent real (plausible) spatial entities. 

Finally, due to convergence issues, the GLS solution was 

obtained with regular 5-fold cross validation. This could 

partly explain the large variance in the GLS solution. 

 

 

4 Conclusions and outlook 

This brief study showed the differences in performance of 

some well-established ML algorithms when dealing with 

regression of spatial variables and how they compare against a 

well-known spatial algorithm.  The results suggest that some 

ML algorithms are naturally more resistant to spatial 

autocorrelation.  This is an interesting finding as it suggests 

the possibility of optimizing a regression task by selecting an 

adequate algorithm.  Furthermore, the algorithms that exhibit 

the best goodness of fit (such as Cubist, SVMRBF, NNET and 

NNETPCA) are also the strongest in terms of resistance to 

spatial autocorrelation, which strongly suggest an overall 

superiority of the before mentioned algorithms.  The chosen 

spatial algorithm (GLS) performed poorly probably because it 

is designed to handle SAC only in the residuals whereas our 

study incorporates SAC in the regression coefficients and 

explanatory variables. 

The next step in our research will be to assess the 

performance of ML algorithms on real geographic data and 

compare it against a larger suite of spatial algorithms. Also, 

our future work will study the transferability of regression 

models built with different ML techniques; Finally, we will 

explore the benefits of blending results from different ML 

algorithms as ways to improve the goodness of fit and 

resistance to spatial autocorrelation in regression tasks. 

 

 

Nugget Best R2 Worst R2 

1% SVMRBF (0.828) GLS (0.613) 

10% SVMRBF (0.796) GLS (0.590) 

20% NNETPCA (0.802) GLS (0.613) 

30% SVMRBF (0.781) GLS (0.640) 

40% NNETPCA (0.723) GLS (0.555) 

50% Cubist (0.610) GLS (0.510) 

Nugget Best NRMSE Worst NRMSE 

1% SVMRBF (0.077) GLS (0.118) 

10% SVMRBF (0.079) GLS (0.119) 

20% NNETPCA (0.085) GLS (0.142) 

30% SVMRBF (0.090) GLS (0.119) 

40% NNETPCA (0.088) GLS (0.120) 

50% Cubist (0.112) GLS (0.137) 

Nugget Best Moran’s I Worst Moran’s I 

1% SVMRBF (0.107) GLS (0.587) 

10% SVMRBF (0.166) GLS (0.498) 

20% NNETPCA (0.124) GLS (0.481) 

30% SVMRBF (0.206) GLS (0.450) 

40% NNETPCA (0.187) GLS (0.429) 

50% Cubist (0.198) GLS (0.357) 

Nugget Moran’s I on simulated vector data 

1% 0.6748462 +/- 0.065 

10% 0.67419 +/- 0.087 

20% 0.659541 +/- 0.067 

30% 0.64000 +/- 0.081 

40% 0.6073205 +/- 0.090 

50% 0.5497491 +/- 0.084 
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Figure 2: R2 per level of SAC in the synthetic data and per algorithm 

Figure 3: NRMSE per level of SAC in the synthetic data and per algorithm 
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Figure 4: Residual SAC per level of SAC in the synthetic data and per algorithm 


