
1 Introduction

This work aims to design and analyse algorithms
and data structures for efficiently processing
and storing geographic vector data.

This processing involves computing topological
relationships between geometric data, such as
touches, contains, overlaps and intersects
predicates, as described in Open Geospatial
Consortium’s (OGC) ”Simple Features
Specification for SQL”[2], based on the nine
intersection model.

These data structures should not only allow for
the storage of geographic data in memory,
synchronized with an existing relational
database, but also the performance of efficient
spatial queries. The algorithms for performing
these queries are analysed experimentally and
compared against postGIS spatial extension,
using data provided by Open Street Maps (OSM)
for that purpose.

In order to improve the efficiency of query
operations, the present system assumes that the
data structures will live mostly or completely in-
memory.

2 Architecture

In order to devise a solution that complies with
the requirements presented in the previous
section, a modular architecture was designed as
depicted in Figure 1.

The system is divided into three layers, each
comprised by a collection of modules. Within the
scope of this project lies the ”WFS
Compatibility” and the ”Data Structure” layers.
The ”WFS Compatibility Layer” expects requests
compliant with OGC’s Web Feature Service
Interface Standard[4], which are then parsed by
the “Request Handler” and solved using

functions from the ”Data Structure Layer”. The
”Data Structure Layer”, provides an interface for
searching and managing data using an in-
memory spatial indexing structure.

Figure 1: Top-level system architecture.

The “Memory Manager” module is used to
prevent excessive memory consumption by the
indexing structure, thus being capable of loading
and saving the structure to external memory.

Algorithms and Data Structures for Large Scale
Geographic Information Systems: A Performance Analysis

Bernardo Marques
CISUC, DEI, University of Coimbra

Coimbra, Portugal
basimoes@student.dei.uc.pt

Luís Paquete
CISUC, DEI, University of Coimbra

Coimbra, Portugal
paquete@dei.uc.pt

Pedro Reino
Smartgeo Solutions

Lisboa, Portugal
pedro.reino@smartgeo.pt

Carlos Caçador
Smartgeo Solutions

Lisboa, Portugal
carlos.cacador@smartgeo.pt

Abstract

In this work, the performance of a system for the efficient processing of topological queries on geographic
vector data, relying on in-memory algorithms and data structures, is analysed and compared with existing and
available systems. The proposed system focuses mainly on querying time. Experimental results are reported and
discussed in order to evaluate its performance.

 Keywords: Geometric Data Structures, Spatial Indexing, Geographic Information System (GIS)

Figure 2: Which polygons cover point x?

3 Data Structure

Since the main concern is query performance,
the chosen data structure for spatial indexation
is the Polygonal Map Quadtree [3]. Since this
structure is based on partitioning the space into
disjoint cells, it is expected to perform better
than a non-disjoint partitioning structure [1],
even though it has probably higher memory
requirements. Moreover, relatively good update
times are also an important factor in this choice.

In order to process the topological queries, the
data structure is used as follows:

1. for each node intersected by the query
geometry, update a 9-intersection matrix
for each geometry present in the node.

2. For each node that is strictly contained
in the query geometry, iterate over these
node's geometries and update the
respective 9-intersection matrices.

3. Starting at one point of the query
geometry, iterate over all nodes
intersected by a line starting at that
point and ending outside the tree
domain. Any polygon that completely
contains the query geometry and has not
been analyzed yet, is stored in one these
nodes.

Using the above description, it is possible to
build a 9-intersection matrix for each relevant
geometry, which results in the ability to answer
most topological predicates with similar times.
Moreover it is also possible to report more than
one topological predicate without much
additional effort.

4 Experimental Results

In order to compare the performance of the
presented system against postGIS, data from
Open Street Maps regarding the geographic
region of Portugal was used.

These results were computed in a laptop with
an Intel Pentium P6000 (1.87GHz, dual-core),
4GB DDR3 SDRAM and a solid state drive
“Samsung 850 EVO”, connected using SATA II
technology. The operating system is a minimal
Arch Linux instalation without graphical
environment. The source code is written in C++
and compiled using GNU Compiler Collection.

Figure 3:Which points are covered by polygon x?

The results for two queries are presented:
1. In Figure 2, the results for the query

“Which polygons cover point x?”
2. In Figure 3, the results for the query

“Which points are covered by polygon
x?”

The plots indicate that the performance of the
presented system is slightly better than that of
postGIS. It is also worth noting that the results
for postGIS consider only the execution time as
reported by the explain analyze SQL command.

Note that the proposed system can still be
improved, for instance, by using more accurate
aproximations to geometries to avoid
unnecessary and costly calls for the computation
of intersections between geometric objects,
which is now done using minimum bounding
boxes.

References

[1] Erik G. Hoel and H.Samet. A qualitative
comparison study of data structures for
large line segment databases. ACM SIGMOD
Record. Vol. 21. No. 2. ACM, 1992.

[2] Open Gis Consortium Inc. Opengis simple
features specification for sql. Technical
Report Revision 1, 1999.

[3] H. Samet and R. E. Webber. Storing a
collection of polygons using quadtrees. ACM
Transactions on Graphics (TOG), 4(3):182–
222, 1985.

[4] P. A. Vretanos. Web Feature Service 2.0
Interface Standard. Open Geospatial
Consortium, 2010.

Acknowledgements

This work is being developed in the context of
the R&D project QREN unit in co-promotion
no.34164 - Smartgeo Portal ”Geographic
Information Management System”. The project
is co-financed by QREN and Innovation Agency
within the scope of the technological
development and research incentive system, by
the Operational Program for Competitiveness
and Internationalizations (Compete).

