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1  Introduction 

Proximity graphs, also called neighborhood graphs, are 

simply graphs in which two vertices are connected by an edge 

if and only if the vertices satisfy particular geometric 

requirements. “Proximity” here means spatial distance, and 

many of them can be formulated with respect to many metrics, 

but the Euclidean metric is used most frequently [4]. These 

graphs are utilized in multiple applications. For instance, in 

computer science, properties, bounds on the size, algorithms, 

and variants of the proximity graphs were discussed, and 

numerous applications including computational morphology, 

spatial analysis, pattern classification, and data bases for 

computer vision were described [7]. 

In spatial analysis, Tanimura and Furuyama [16] and 

Watanabe [18] created familiar proximity graphs (Delaunay 

triangulations, Gabriel graphs, relative neighbourhood graphs, 

and minimum spanning trees) using the locations of 

intersection points in actual street networks, and discovered 

that such networks resemble proximity graphs. 

One other area of interest where proximity graphs find 

application is in the field of transportation, where a graph 

representation of infrastructure can be used to assess 

efficiency of travel, configuration, properties of street 

networks. For instance, Koshizuka and Kobayashi [12] 

analyzed street networks by looking at the efficiency of travel, 

specifically, the ratio between shortest path length and 

Euclidean distance. This ratio is called “spanning ratio”, 

which has been studied theoretically and numerically using 

proximity graphs. Eppstein [6] discussed the dilation of 

various proximity graphs, defined as the maximum ratio 

between shortest path length and Euclidean distance. Bose [3] 

and Wang et al. [17] discussed theoretically the spanning ratio 

of a proximity graph defined on n points in the Euclidean 

plane, and obtained the upper-bounds and lower-bounds of the 

spanning ratio. Watanabe [19] evaluated the configuration and 

the travel efficiency on proximity graphs. 

Thus, proximity graphs have been investigated from two 

different perspectives. From a morphological perspective the 

authors mainly focused on topological structure of street 

networks created by proximity graphs, that is, the ways in 

which intersections were connected [1, 13, 20]. A different 

approach that is relevant in transportation is the efficiency of 

travel, which provides an alternative perspective on networks 

[6, 12, 19]. 

In this paper, our objective is to employ the concept of β-

skeleton which changes in response to variations in single 

parameter value of β, in order to investigate street networks 

from the above two different perspective: the topological 

structure and the travel efficiency at the same time. The 

original contribution of this paper is to clarify their 

relationships which vary according to local geographic 

characteristics.  

 

 

2 Topological Structure of Proximity Graphs 

2.1 Concept of β-skeleton 

Given a spatial distribution of points pi (i = 1, 2, …, n) in two-

dimensional space, let us consider various ways of creating 

proximity graphs that connect the points to each other. As 

shown in Figure 1, let us assume that two circular arcs pass 

through the arbitrary points p1 and p2. The size of the closed 

region E enclosed by the arcs (the crosshatched portions in 

Figure 1) varies with the parameter β ( 0), such that the area 

of E increases as β increases. Then, if some third point is 

included within E, then the segment with endpoints p1 and p2 

is not an edge in the graph, whereas if no such third point is 

included, the graph contains this segment as an edge.  

A proximity graph created according to this rule is called 

the β-skeleton and its effective calculation methods were 

proposed [2, 4, 5, 11, 17]. It is well established that the case β 

= 0 corresponds to the complete graph (CG), β = 1 
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corresponds to the Gabriel graph (GG), and β = 2 corresponds 

to the relative neighbourhood graph (RNG). 

 

Figure 1: Definition of β-skeleton. 

 
 

 

2.2 Definition of agreement rate 

Let us define an “agreement rate” as an index expressing how 

closely the morphology or topology of a proximity graph 

resembles that of an actual street network (that is, the degree 

of morphological or topological structure [8, 9]). First, the set 

of edges making up the street network is denoted by R, and 

the set of edges making up the proximity graph is denoted by 

G. The number of elements in the set of edges (number of 

edges) is written as the function n( ). Then, we define the 

agreement rate (C-rate) as the number of elements in R∩G 

divided by the number of elements in R∪G, that is, 

n(R∩G)/n(R∪G). Also, we distinguish between what we call 

the “R-rate”, an alternative agreement rate based on the actual 

street network R, n(R∩G)/n(R), and the “G-rate”, an 

alternative agreement rate based on the proximity graph G, 

n(R∩G)/n(G). 

 

Figure 2: Definitions of agreement rates. 

 
 

2.3 Maximum agreement rate and value of β 

A part of the greater Tokyo metropolitan region was chosen as 

the area for analysis (Figure 3). The analytical region was 

subdivided into eight subregions according to map borders (as 

indicated by the numerals in the figure), and each subregion 

was analyzed in order to consider local characteristics. The 

highways in each subregion were extracted as the actual street 

network R (Figure 4). Because the objective is to analyze 

similarity of topological structure, all the streets between the 

intersection points of the street network were replaced with 

straight lines. 

 

Figure 3: Study area. 

 
 

Figure 4: Street networks to be analyzed as R. 

 
 

Figure 5 is a set of proximity graphs G in which β is varied 

from 1.0 to 2.0 in steps of 0.5 using the actual intersection 

points in Figure 4. As seen, the number of edges decreases 

gradually as the value of β increases. 

In Figure 6 (a), the edges in the actual street network R are 

shown with the portion common with the proximity graph G 

(β = 1.5) (R∩G) indicated by thick lines. In Figure 6 (b), the 

proximity graph G (β = 1.5) is shown, again with the common 

portion with the actual street networks (R∩G) indicated by 

thick lines. 

Proximity graphs G were created for various values of β, 

using Subregion 4 as an example, and the resulting C-rate, R-

rate, and G-rate with respect to the actual street network were 

calculated (shown in Figure 7). The value of β yielding the 

maximum agreement rate is labeled β1. There is a trade-off 

between maximizing the G-rate and maximizing the R-rate, 

but the agreement rate (C-rate) is a comprehensive index 

providing a balance between the two. 

The agreement rate (C-rate) for each of the eight subregions 

in the study area were calculated after creating proximity 

graphs G for various values of β. Table 1 shows the maximum 

agreement rate and the corresponding β1. As shown, the 

values of β1 for the subregions lie between 1.1 and 1.5. 
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Figure 5: Proximity graphs based on β-skeletons for different 

values of β. 

 
β = 1.0 

 
β = 1.5 

 
β = 2.0 

 

Figure 6: Common (thick lines) and disjoint (thin lines) edges 

of the street network R (a) and proximity graph G (b), where β 

= 1.5 for Subregion 4. 

 
 

 

Figure 7: Agreement rate as function of β for Subregion 4. 

 

Table 1: Maximum agreement rate and the corresponding 

value of β1. 

Subregion Maximum agreement rate β1 

1 0.610 1.40 

2 0.643 1.45 

3 0.639 1.15 

4 0.693 1.40 

5 0.623 1.20 

6 0.614 1.20 

7 0.637 1.30 

8 0.656 1.25 

 

 

2.4 Relation between maximum agreement rate 

and density of intersection points 

Figure 8 demonstrates how the maximum agreement rate 

varied with the density of intersection points (the number of 

intersections per square kilometer). The highest β1 in the 

Tokyo region is for Subregion 4, where the density of 

intersection points is greatest; β1 is lowest in Subregions 1, 5, 

and 6, which have the low densities of intersection points. 

Let us consider why the agreement rate is low for these 

areas, such as mountainous areas, where the density of 

intersection points is low. As shown in Figure 9, builders of 

actual street networks tend to skirt mountainous areas, so 

spatially neighboring points p1 and p2, as well as points p3 and 

p4, are not directory connected to each other. However, in 

proximity graph G, only the spatial relationships are 

considered, and so the agreement rate was lowered by the 

addition of edges between such points. 

 

Figure 8: Maximum agreement rate versus density of 

intersection points (numerals indicate subregion) 

 
 

 

Figure 9: Explanation of low agreement rates for mountainous 

areas 
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3 Travel Efficiency of Proximity Graphs 

3.1 Concept of spanning ratio 

The spanning ratio (SR) has been suggested as an index 

expressing the travel efficiency through a network [3, 17]. SR 

is defined as the value of the distance L between two points on 

the network paths divided by the Euclidian distance D 

between the points (Figure 10). In other words, the greater the 

values SR, the lower the travel efficiency in the network. 

 

Figure 10: Definition of spanning ratio 

 
 

 

3.2 Spanning ratio of proximity graphs 

The intersection points in the street networks R in the previous 

section were used to create proximity graphs for various 

values of β (1.0 ≤ β ≤ 2.0). Next, two intersections at a time 

were extracted at random and the value of SR was calculated 

for that pair. The mean m and standard deviation σ were 

calculated for the SR of 1,000 point pairs for each graph. The 

results showed that m is an increasing linear function of β (m 

= aβ + b; a and b are unknown parameters). The increase in m 

is due to proximity graphs with higher values of β having 

lower numbers of edges, decreasing the efficiency of spatial 

movement in the graphs (Figure 11). 

 

Figure 11: Mean and standard deviation (indicated by error 

bars) of spanning ratio of proximity graphs G for Subregion 4. 

 
 

Also, the results showed that the value of σ grows with the 

value of β. The growth of σ indicates that there is high 

variation in the travel efficiency between point pairs, that is, 

that there is a large difference between the Euclidian distance 

and the network distance between point pairs. Therefore, 

when we conduct analysis of spatial movement in regions 

with low street densities, it is preferable to use network 

distance rather than Euclidian distance. 

The mean m of SR for 1,000 point pairs was calculated for 

the actual street network of each subregion. The values of β 

(β2) were then inversely estimated using m by the equations 

(β2 = (m – b)/a). Specifically, the values of β for the proximity 

graph indicating the mean values of SR equivalent to that of 

the actual street network were calculated. These values are 

shown in Table 2 along with the corresponding values for 

parameters of regression equations. As shown, in all the 

subregions analyzed here, β2 remains within the range 1.1 to 

1.5, the same as β1. 

 

Table 2: Value of β2 for the proximity graph whose travel 

efficiency is equivalent to that of actual street network. 

Subregion m a b R2 β2 

1 1.224 0.217 0.913 0.993 1.440 

2 1.196 0.184 0.934 0.993 1.432 

3 1.155 0.184 0.946 0.981 1.146 

4 1.166 0.145 0.968 0.993 1.363 

5 1.184 0.213 0.906 0.998 1.310 

6 1.194 0.238 0.874 0.994 1.350 

7 1.178 0.202 0.914 0.989 1.310 

8 1.210 0.207 0.918 0.995 1.374 

 

 

3.3 Relation between spanning ratio and density 

of intersection points 

Figure 12 shows how the slopes a in Table 2 varied by the 

density of intersection points. As shown, the lower the 

density, the greater the slope. Since slope a indicates the rate 

of increase in SR with respect to an increase in β (from the 

regression equation SR = aβ + b), the lower the density of 

streets in a region, the greater the influence of  on travel 

efficiency (SR) in the corresponding proximity graphs. Thus, 

the travel efficiency in an area with a low density of 

intersection points will be more strongly influenced by street 

closures, for example due to earthquakes, than higher density 

areas. 

 

Figure 12: Slope a versus density of intersection points 

(numerals indicate subregion) 

 
 

 

3.4 Relation between β1 and β2 

Figure 13 shows relationships between the β1 (value of β for 

proximity of topological structure) and the β2 (value of β for 

proximity of travel efficiency). The values of β1 and β2 are 

roughly similar in subregions 1, 2, 3, 4, and 7, mainly the 

downtown Tokyo area, where the density of streets is high. 

On the other hand, in subregions 5, 6, and 8, suburban areas 

with low densities of streets or areas with mountains or wide 

rivers, β1 < β2 holds. In these areas, there is a risk that using 

proximity graphs, which have been created on the basis of 

proximity of topological structure, will provide erroneous 

predictions of travel efficiency. Specifically, the travel 
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efficiency in the actual street network is likely to be lower 

than that in the proximity graph created on the basis of 

topological proximity in these areas. 

 

Figure 13: β1 versus β2 (numerals are subregion numbers). 

 
 

 

4 Summary and Conclusions 

We carried out an analysis of a street network created by 

proximity graphs based on β-skeletons from each of two 

viewpoints, topological structure and travel efficiency. The 

following findings were identified: 

(1) The value of β in a proximity graph with a maximal 

topological proximity to an actual street network is in the 

range 1.1 to 1.5 for the networks examined here. 

(2) The agreement rate between a street network and a 

proximity graph is less in mountainous suburban areas or 

similar areas with low densities of streets. 

(3) The value of β in a proximity graph in which travel 

efficiency is equivalent to an actual street network is in the 

range 1.1 to 1.5 for the networks examined here. 

(4) The travel efficiency (Spanning Ratio: SR) between two 

points shows more variation in suburban areas with low 

densities of streets; therefore, when investigating the travel 

efficiency between locations, the analysis must employ the 

distance in the network rather than the Euclidian distance 

between the points. 

(5) The value of β1 when there is high topological proximity 

was nearly equal to the value of β2 when there is a strong 

similarity between the travel efficiencies in the central part of 

Tokyo. However, β1 < β2 in the Tokyo suburbs, indicating that 

an analyst must take account of the higher travel efficiency in 

the proximity graph mostly strongly resembling the actual 

street network than that in the actual street network itself. 

In this paper, we investigated the properties of proximity 

graphs by comparing with actual street networks. This 

approach can be extended for the general modeling of various 

numerical simulations, as well as theoretical analysis on 

intersections which are randomly distributed following the 

Poisson distribution. It would be also interesting to develop 

this approach for the street hierarchies from the multiple 

perspectives of topology and geometry [10], and for a method 

to automate street networks in urban area [14]. 
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