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1 Introduction 

One challenge in understanding paths through networks is 

detecting when observed paths depart from what is considered 

normal. What is normal is, of course, subject to a priori 

establishment of corresponding expectations. In this paper we 

present an approach for learning an a priori model for a set of 

potential paths. We then demonstrate how this model can be 

used to facilitate real-time detection of when observed paths 

depart from the expected path(s) represented by the learned 

model. Applications of real-time path anomaly detection 

range from the health field [7] to fraud detection [3], to 

automated surveillance of individuals, traffic, objects and 

crowds [9]. 

In the context of this study, we define anomalous event as 

an event that has characteristics significantly different than 

normal [9]. Proliferation of track data from mobile devices 

has led to a variety of applications wherein the goal is to 

detect anomalous mobility patterns [2, 7]. In such cases, the 

anomaly occurs when an observed mobility pattern departs 

from a previously established pattern. Often couched in terms 

of  “path matching” problems [6], many methods are used to 

look at path similarity [4]. 

The challenge of working with similarity detection methods 

for real-time path data is that the paths and, hence, the 

corresponding metrics are constantly changing [5]. Similarly, 

there are a potential for a number of ambiguous cases [8]. 

Alternatively, it is possible to classify a dynamic path against 

an established baseline [1, 3]. In both [3] and [1], a baseline is 

established with previously collected GPS traces. Though [3] 

uses a grid-based approach in conjunction with isolation-

based methods and [1] uses a reduced “support point” 

representation, both compare emerging trajectories to a 

previously established baseline.  

Here, we present a method capable of using either 

previously collected GPS data or baseline paths from a map 

interface such as Google Maps. In turn, we present a new 

method for discerning departures from this baseline using a 

series of weighted graph models. In the next section we 

address the problem and, following, illustrate the methods and 

analytic results.  

 

 

2 Problem Definition 

The principle emphasis of this research is to determine 

whether an observed path departs from an expected path and 

to make this determination in real-time.  

Consider a street network represented by a series of nodes 

and edges. Paths through that network can be represented as a 

collection of ordered vertices where, by extension, traversal of 

a vertex implies traversal of the corresponding edge between a 

vertex and the previous vertex. Paths may be thought of in 

terms of being either observed (i.e., a series of recorded 

network locations), or as expected (i.e., determined in an a 

priori manner).  

Observed paths may be thought of in terms of whole or 

partial paths. Whole paths are simply paths between an 

identified origin and destination. Partial paths may be either a 

static segment of a whole path or a path that lengthens 

dynamically over time with or without a predetermined 

destination. For this effort we focus on the latter, paths that 

evolve over time with no predetermined destination. While 

any network space may be used, we express observed paths 

via serial latitude and longitude locations and, in turn, 

associate these observations with the nearest network vertices 

in a planar embedded street network. 
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servers has led to a variety of applications ranging from health situation monitoring to GPS-based offender monitoring. One of the resultant 
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graph approach for examining path similarity and an extension for detecting anomalies in real-time. Our results illustrate how we can 
distinguish from among multiple candidate paths and, likewise, when observations no longer match an expected model. 
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Expected paths are determined in an a priori manner and 

represent idealized versions of paths that will be observed. 

Expected paths are a set of edges, specified via either 

previously recorded locations, algorithmically via a shortest 

path between two points, or manually via an appropriate 

interface). 

In order to determine whether an observed path is departing 

from an expected path two assumptions are necessary. First, 

for a variety of reasons, an observed path through a network 

may deviate from what is expected but may still reasonably be 

considered to be the same (e.g., a parallel road used to divert 

around an obstruction in a street network). Thus, the basis for 

determining when an observed path has substantively departed 

from what is expected must be couched in terms appropriate 

to the problem at hand. 

Allowance for relative path similarity is accomplished 

through the establishment of a “decay” function around the 

expected path. This decay function serves to distribute the 

highly discrete information associated with a specific path on 

to adjacent edges in an exponentially declining manner 

relative to the cumulative shortest-path distance to each node 

encountered in the expected path. We call this representation a 

“posterior weighted graph” (PWG) and it is the model against 

which observations are compared. 

Identification of departures of observed data from expected 

paths in real-time also requires the establishment of lower 

bound criteria for when an observed path is no longer 

functionally equivalent to an expected path. This lower bound 

is determined by two parameters, the maximal rate of change 

of observed data relative to the expected path models, and a 

threshold time in which no new maxima occur. 

In the next section, we formalize the modelling approach. 

We briefly describe the development of the posterior weighted 

graph models, the classification process used to compare 

observations to expectations, and our real-time 

implementation of this process. 

 

 

3 Detection of path anomalies 

3.1 Characterization of expected paths 

As mentioned in the previous section, expected paths are 

characterized using posterior weight graphs. The PWG 

probabilistically represents the likelihood that any edge will 

be used in association with an expected path.  

The PWG is created by first initializing every edge in the 

graph with a 0 weight. The vertex sequence associated with 

the expected path is then traversed, and the coincident edges 

are each assigned an initial weight value. Following the 

assignment of the initial weight value (usually the edge 

length, but any weight may be used), the edges in the 

neighbourhood of each vertex are then assigned progressively 

lower weights using               
where dist(i,j) is the 

cumulative shortest-path distance to the next vertex or 

vertices, and σ is the decay parameter. The depth of the 

neighbourhood traversal is limited by parameter Tw, a 

threshold weight tolerance below which the decay is 

considered to render edge weights negligible in terms of their 

influence on the model.  

 

Figure 1: Edge weighting and the decay function. 

 
 

As Figure 1 illustrates, the edges associated with the 

expected path (dashed line) are most strongly weighted. The 

edges immediately adjacent are weighted somewhat less 

strongly, and distant edges are weighted in a very limited 

manner. The process of traversing vertices in the path is 

repeated until the expected path is complete. Because the 

neighbourhood of each vertex is examined, edges coincident 

to multiple vertices are reinforced. 

 

 

3.2 Classifying a path 

3.2.1 Converting PWGs to a probability model 

As there may be multiple PWGs for multiple expected paths, 

it is necessary to set the stage for modelling any observed path 

as a set of edge probabilities. This supports a classifier that 

uses a probabilistic approach to determine from which 

expected path a set of observed edges would be most likely 

drawn. The probability model for each expected path is 

derived from the corresponding PWG.  

We begin the process by establishing a minimum edge 

probability, pmin, an arbitrarily low probability that ensures 

that no edge has zero probability. We then rescale all the edge 

weights based on the maximum weight less pmin and add pmin 

to all of the probabilities (Eqs. 1 and 2).   

 

    
  

       
 

          
       

 

   
  

   
 

    
 

                  

 

This scaling process is repeated for each k expected paths 

and ensures all weighted edges from the PWGs have some 

minimum probability, that the weight values are 

monotonically proportional to edge probabilities, and that all 

potential expected probability models are scaled to the same 

pmin. 
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3.2.2 The anti-model 

Determining when observations depart from expectations as 

represented by the set of expected probability model requires 

an additional mechanism. Specifically, as the classifier will 

identify the probabilistically “best” match even if the 

corresponding probabilities are very low, we must provision 

for the case when the path being classified does not strongly 

match any of the individual expected path probabilities. In 

order to facilitate this process we develop what we refer to as 

the “anti-model.”  

The anti-model is essentially a reciprocal set of probabilities 

associated with edges not reinforced by the k expected 

models. First, for each edge in each of the k expected models, 

the maximum probability for that edge is determined. The 

anti-model probability is, in turn, calculated for each edge as 

the minimum of either the complement of the maximum 

probability or a user-defined parameter, psensitivity (Eq. 3). 
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This results in a final probability model wherein edges with 

high probabilities in any of the k expected models are 

assigned a low probability through the psensitivity parameter. 

This mechanism implements a heuristic, worst-case 

identification of an anomalous path.  Such a worst-case 

identification reduces the possibility of falsely identifying 

anomalous paths. We now explore how this is used in the 

classification process. 

 

 

3.2.3 Classifying an observed path 

Given the probability models associated with each expected 

path and the corresponding anti-model, we wish to determine 

whether an observed path is most like one of the k expected 

paths or most like the anti-model. 

In order to do to this, we compute the log likelihood of the 

observed path being from any given model (Eq. 4). This 

represents an assessment of the likelihood of the joint event 

that the edges in the path set came from model k under the 

assumption that edge inclusions are conditionally independent 

given the model. 
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It is unlikely that the assumption of conditional 

independence is completely valid. Nevertheless, we believe 

that the graph contains sufficient information so that 

proceeding with the naïve assumption still results in a useful 

classifier. 

Finally, for classifying paths, we will typically include the 

anti-model in addition to the k expected models. After all log 

likelihoods have been calculated, the model with the highest 

log likelihood is the model from which the observed path is 

most likely drawn. If, on the other hand, the anti-model has 

the highest log likelihood, then we assert that the observed 

path does not likely match any of the expected paths and can, 

therefore, be considered anomalous.  

 

 

3.3 Real-time detection of anomalies 

Once the classifier is established, extending it to work with 

real-time observations is relatively straightforward. Simply, 

we consider a path to have a starting observation and, over 

time, successive additional increments of the path are added. 

In terms of classifying a dynamic set of observations, for each 

successive observation, the cumulative “observed” path is 

extended and the classifier is reapplied relative to the original 

expected models and corresponding anti-model. The challenge 

is detecting when a set of observations has transitioned from 

an expected state to an anomalous state. 

In order to detect transitions from expected to anomalous in 

real-time, we use a second order numerical approximation of 

the backwards difference technique (Eq. 5).  

 

       
             

  
               

 

For each additional observation (extension to the path), we 

instrument the real-time classifier to record the log likelihood 

for the each of the k models and the anti-model. When the 

trend with the highest log likelihood simultaneously expresses 

a maximum positive rate of change, we consider this a trigger 

(indicating the potential for association of the observations 

with a corresponding model). When the log likelihood for that 

trend does not decrease for a user specified number of 

additional “lock in” observations (Lo) and there are no 

additional triggers, the observed trajectory is considered to be 

similar to the corresponding model. If this is one of the 

expected models, then the observed data are considered 

expected, if the lock-in is associated with the anti-model then 

the observations are considered anomalous. 

 

 

3.4 Summary 

As with any modelling effort, the success of the model is 

dependent on the proper selection of the parameters 

underlying the model. The advantage of having an adequate 

parameter space, however, is that the model can be tailored to 

multiple modelling scenarios. For example, while our case 

studies use spatially embedded transportation networks (and 

have the commensurate topological constraints), the 

parameters would allow for use of other networks such as 

telecommunications networks, social networks, and utility 

networks. For the scenarios that follow, Table 1 summarizes 

Table 1: Model parameters and description. 

Parameter & 

Value 

Description 

σ =20.0 The rate of decay of edge weights associated with the model for each path. Larger values 

result in a more general model. 

Tw = 0.00001 The weight tolerance controlling the depth of the decay function. 

pmin =0.0001 Minimum probability for rescaling edge weights from decay model into probability model. 

psensitivity =0.2 A lower bound to limit false positive associations with the anti-model. 

Lo = 3 Lock-in. This is the number of post-trigger observations required to confirm association with 

either an expected model or the anti-model. 
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the parameter space. In the present experiment, the parameter 

values were empirically identified and work across a variety 

of scenarios and input data. Future research will examine how 

appropriate parameter values can be derived through machine 

learning based on input training data. 

In the next section we illustrate the use of the above model 

and demonstrate its use for both real-time path matching and 

anomaly detection. 

 

 

4 Implementation and evaluation 

4.1 Two scenarios 

In order to demonstrate the ability of the previously described 

model to both identify when an observed path matches an 

expected path and when an observed path becomes 

anomalous, we present two related scenarios. 

 

 Scenario 1: Multiple expected paths are learned 

and the anti-model is computed. Observed data 

are monitored and the point at which the 

observations are definitively associated with one 

of the expected paths is reported. 

 

 Scenario 2: Multiple expected paths are learned 

and the anti-model is computed. Observed data 

are monitored and the point at which the 

observations can definitively be considered 

anomalous is reported. 

 

The scenarios are based on a subset of the street network 

from Laramie, WY, USA with expected data based on routes 

derived from Google Maps and observed data collected using 

a Garmin Forerunner 210 GPS watch. 

 

Figure 2: The learned paths shown on the Laramie streets. 

From left to right, Downtown, Southend, Grocery. 

 
Source: Google Earth. 

 

Both of the scenarios classify against three learned models 

and the anti-model. The three models include “Downtown,” 

round trip travel to the Laramie town centre, “Southend,” an 

arbitrary trip across town and, “Grocery,” a trip to the grocery 

store. All of the paths were mapped in Google Maps, 

extracted as GPX data, and mapped to coincident vertices in 

the street network using a spatial search algorithm. The 

resultant ordered vertices are the graph-based representation 

of the potential expected paths.  

Though the observed data were collected as a single GPS 

track, we simulate real-time online processing. The real-time 

emulation is accomplished by introducing each successive 

track point and extending the observed path. We then re-

compute the log likelihoods, recalculate the numerical 

approximation of the second derivative, and evaluate against 

Lo. 

 

 

4.2 Scenario 1 – Multiple expected paths 

In this scenario we simulate where an individual is choosing 

from among several potential activities as specified in Section 

4.1. Our goal is to observe their trajectory and, as quickly as 

possible, identify which activity they are most likely doing. 

As Figure 3 illustrates (and can be intuited from Figure 2), it 

is not possible to differentiate the activity based on the initial 

set of observations. However, beginning with the fourth 

observation (49 seconds into the journey), the likelihood of 

any given path begins to diverge. The first trigger (maximum 

positive rate of change associated with the highest log 

likelihood) occurs at the 6th observation (81 seconds), and the 

association with the Southend route is locked in at the 9th 

observation, approximately 51 seconds later. 

 

Figure 3: Confirmation of the Southend path at 132 seconds. 

 
 

Figure 4 shows a map view of the first trigger and the 

subsequent lock-in. The “soft” association that comes from 

the trigger event helps minimize false positives and serves to 

leverage the fuzziness (and the potential that observations 

may match, depart, then return to a specific expected path) 

facilitated with the underlying decay function described in 

Section 3.1. 
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Figure 4: The observed path from origin through lock-in. 

 
Source: Google Earth. 

 

4.3 Scenario 2 – Expected vs. anomalous paths 

Like the previous example, here we simulate a scenario 

wherein we are trying to determine if an individual’s 

trajectory through the network is consistent with one of three 

predetermined paths. In contrast, however, rather then 

reporting when an individual’s trajectory is associated with an 

expected path, we want to report when their trajectory is 

definitively anomalous. 

 

Figure 5: Confirmation of anomalous route at 222 seconds.  

Trigger events are shown with numbers 1 – 4. 

 
 

In contrast to the previous example, the first trigger event in 

this case arises from an apparent association with the 

Southend path at 79 seconds (Figure 5, trigger 1). As 

illustrated, however, this is something of a false positive, and 

the lock-in fails with a second trigger event at 96 seconds in 

association with the Downtown path. This association is 

relatively strong, however, a third trigger event on the same 

model occurs with the 10th observation at 142 seconds. This 

third trigger event prevents the lock-in that would have 

otherwise occurred at this observation. At the 12th observation 

(174 seconds) a forth trigger event, this time associated with 

the anti-model, is seen. Three observations later (per Tw), there 

are no additional triggers and the lock-in as an anomalous 

path is confirmed at 222 seconds. 

 

Again, Figure 6 shows a map view of the observed 

trajectory and the various detection events. 

 

Figure 6: The observed path from origin through lock-in. 

 
Source: Google Earth. 

 

The sequence of triggers illustrates the role of the 

interacting decay functions in terms of defining the 

probabilities of associating with any given path. Since the 

probability of the observed data is cumulative in nature, there 

is a seeming lag between the path association and the trigger 

point. This is a characteristic of the approach and can be 

adjusted through the sensitivity and σ parameters. 

 

4.4 Summary 

In the presented scenarios, the paths themselves and the 

corresponding GPS data can clearly be differentiated from one 

another and the underlying anti-model using the presented 

method and corresponding parameters.  

In a different context (e.g., that such as illustrated in [3]), 

the same approach could be used to determine whether a 

single GPS track is more like a collection of potential paths 

or, again, the anti-model. A characteristic of this approach is 

its flexibility supporting either comparisons to specific, 

individual paths or, alternatively, a collection of paths 

traversing the network in question. The learned anti-model 

can be the “reciprocal” of a single path or a collection of paths 

or segments. The application in question will be the key driver 

in decisions regarding the overall representation, definition of 

path start and end points, and whether or not specific, 

individual paths or path sections need to be identified. 

 

 

 

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

Lo
g	
Li
ke
lih

o
o
d
	

Observa on	

Downtown	

Southend	

Grocery	

an model	

Lock-in	-	222	sec.	

4	3	

2	

1	



AGILE 2014 – Castellón, June 3-6, 2014 

 

 

5 Conclusion 

This paper presents a preliminary method for using a 

classification-based approach for real-time interpretation of 

network observations. The presented approach is useful for 

discerning either when a set of observations is most similar to 

an expected path or unlike any a priori specified expectations. 

This latter case is useful for identifying anomalous paths in 

real-time. 

The ability to detect either path similarity or difference is 

predicated on learning the model or models that characterize 

expected data. These models, along with the anti-model must 

be learned in the context of the specific problem at hand, the 

nature of the corresponding network, and the characteristics of 

the observed data. The parameters, while perhaps numerous, 

allow for the approach to be tailored to a variety of scenarios. 

While the presented approach is on a street network, any 

network with the potential for supporting expected and 

observed paths is a candidate for use with this method as the 

entire process is aspatial and based on network measurements 

and network locations. 

Two key areas merit additional research. First, as previously 

mentioned, it would be useful to be able to learn the parameter 

space for different problem classes. This would enable more 

effective parameter selection depending on problem and 

network characteristics. The second area for additional 

research is in terms of improving the approach for handing 

real-time data. Predictive methods from the signal process and 

machine learning communities may prove very useful in this 

regard. 
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