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1 Introduction 

Airborne Laser Scanning (ALS) has become a widely 

available tool for fast and accurate collection of data. Such a 

platform is capable of covering large portions of the Earth’s 

surface within short time frames. While having a high speed 

of collection and thus reducing the necessary time to obtain 

the data the system is of great benefit, the method also 

generates a large amount of information. For example, the 

area of world’s smallest country (Vatican 0.2 square miles) 

could generate records from 500GB up to 2-3TB depending 

on the chosen point cloud density. New technologies allow the 

production of great amounts of data in very short time 

intervals but they still did not provide good solutions for 

massive point cloud analysis, thus generating a discrepancy 

between time needed to collect the data and the time needed to 

process it (figure 1). Because of this, many scientists try to 

generate faster and more reliable ways of processing the data. 

Such processes should be as automated as possible thus 

reducing the influence of the human interpreter in the whole 

process. One of such approach used in remote sensing is 

Object-Based Image Analysis (OBIA). [3] recognized that 

using pixel-based methodologies for data extraction and 

classification did not provide sufficient results. [2] described 

in his review the benefits of the Object-Based approach and 

gave an overview of what has been done in the area so far. By 

looking at the homogenous units as conceptual wholes one 

can develop a system of rules which emulate the process of 

human thinking. By doing this (on a primitive level) it is 

possible to generate automated processes for data extraction. 

The process relies on forming the existing knowledge into a 

set of simplified rules under the framework of Cognition 

Networking Language (CNL) which is implemented within 

the eCognition (Trimble) software package.  

 

Figure 1. Graphical depiction of time/data discrepancy when 

working with ALS data 
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Abstract 

Nowadays there is a plethora of approaches dealing with object extraction from remote sensing data. Airborne Laser scanning (ALS) has 

become a new method for timely and accurate collection of spatial data in the form of point clouds which can vary in density from less than 

one point per square meter (ppsm) up to in excess of 200 ppsm. Many algorithms have been developed which provide solutions to object 
extraction from 3D data sources as ALS point clouds. This paper evaluates the influence of the spatial point density within the point cloud 

on the obtained results from a pre-developed Object-Based rule set which incorporates formalized knowledge for extraction of 2D building 

outlines. Analysis is performed with regards to the accuracy and completeness of the resultant extraction dataset. A pre-existing building 
footprint dataset representing Lake Tahoe (USA) was used for ground truthing. Point cloud datasets with varying densities (18, 16, 9, 7, 5, 

2, 1 and 0.5ppsm) where used in the analysis process. Results indicate that using higher density point clouds increases the level of 

classification accuracy in terms of both completeness and correctness. As the density of points is lowered the accuracy of the results also 
decreases, although little difference is seen in the interval of 5-16ppsm. 
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It must be noted that it became popular to use fused data 

sources in order to extract information [4, 13, 14, 19, 27, 29, 

36], but in our case, we use a single source in order to achieve 

necessary results. In the work presented here an automated 

process for building classification based solely on an ALS 

data source has been developed. For this paper it was decided 

to test to what extent the usage of different point cloud 

densities will impact the results obtained from a building 

extraction classification. The results of the testing will give 

indications as to if there really is a need to have high density 

point clouds and how the absence of such a source will 

influence the outcome. Since the algorithm is converting ALS 

point clouds into raster images care was also taken with 

regard the resolution of the data used for the analysis. It was 

decided to test two approaches. In the first one the resolution 

is varied based on the point cloud density and in the second 

one a consistent resolution is used whilst the input density of 

the point cloud is varied. 

 

 

2 Previous work on object extraction from 

ALS data 

With the development of ALS technologies and the presence 

of fast growing spatial data piles, research on the 

implementation of OBIA methodologies (segmentation and 

classification) touched fruitful ground.  Scientists have 

developed many approaches which attempt to delineate and 

classify objects from 3D point clouds with the use of various 

segmentation based methodologies [1, 5, 6, 9, 10, 12, 16, 17, 

18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35]. 

When it comes to the generation of the extraction 

algorithms, most researchers concentrate on domain specific 

solutions which range from earth surface estimation [8], 

geomorphic feature detection [7] and Digital Terrain Model 

creation [21] to modern automatic building extraction [27], 

automatic road extraction [11, 12], and automatic tree 

classification [15, 20]. These approaches are producing 

tangible results but they are not investigating transferability 

across different ALS data sources. Approaches to point cloud 

modelling require standardized rule sets which are universally 

applicable on ALS point clouds. [33] provided one of the 

earliest descriptions of the extraction process based only on 

LiDAR data. He used edge detection on an elevation model in 

order to define candidate objects. A predefined shape 

assumption (I, T or L shape) was applied in order to extract 

building objects. [1] used only ALS point cloud data to extract 

buildings. They used the first minus last pulse method with 

local statistical interpretation to segment the given data. [25] 

developed a new method for building extraction in urban areas 

from high-resolution ALS data. Their approach consisted of 

DSM minus DTM calculation, height thresholding and the 

usage of binary morphological operators in order to isolate 

building candidate regions. [17] provided segmentation and 

object-based classification methodology for the extraction of 

building class from ALS DEMs. Their classification was 

based on regional classification which in turn was based on 

cluster analysis.  

All of previously mentioned approaches utilize point cloud 

data in order to extract information. This proves that it is 

possible to obtain tangible information by processing point 

cloud data. Even though the point clouds are mostly used in 

order to generate elevation models or raster representations on 

which the analysis methods are applied, it is still the original 

ALS data that is being used. Based on these observations and 

presented use cases an algorithm has been developed for 

building extraction from ALS data and testing has been 

performed as to show how point cloud density influences the 

result of the classification. 

 

3 Methodology 

In order to extract tangible objects from ALS data a specific 

set of rules under the framework of Cognitional Network 

Language which is a part of eCognition software package 

were developed. The approach builds on the use of a slope 

raster generated from the minimum height values of last 

returns (figure 2b). Based on the slope calculations an initial 

classification of the scene into hard and weak edges is 

performed. These classified objects are further refined with 

the use of pixel growing techniques and based on the analysis 

of the object’s mean height compared to the mean height of 

the surrounding class it is possible to separate elevated objects 

from the ground surface. 

 

Figure 2: a) generated Digital Terrain Model (DTM), b) 

generated digital surface model (DSM) from minimum values 

of last returns and c) Normalized digital surface model 

(nDSM) generated by subtracting DTM from DSM 
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Figure 3: a) Group of objects which represent all the objects 

which are found above the earth’s surface and b) Classified 

building objects 

 
 

Based on a number of metrics relating to the objects 

(intensity, perimeter to area ratio, shape index, rectangular fit 

and object height) the resulting objects are classified into 

buildings. The remaining objects are then removed from the 

classification. Such extracted building objects (Figure 3b) are 

finally exported to the shapefile format and used for the 

accuracy assessment. It is important to mention that for the 

analysis conducted ALS data was used which represents a 

small area around Lake Tahoe (US) (Figure 4a and 4b). The 

original point cloud has the density of 18 points per square 

meter (ppsm).  

In order to be able to perform additional testing the Quick 

Terrain Modeler (Applied Imagery) software was used in 

order to resample the initial point cloud dataset and generate 

point clouds with densities of 16, 9, 7, 5, 2, 1 and 0.5ppsm. 

Each of the newly produced point clouds was then used with 

the discussed classification algorithm and the resulting objects 

were exported into shapefile datasets. Since raster 

representations of surfaces (slope, DTM etc.) were used that 

were generated from ALS data, it was decided to make two 

specific use case scenarios. In the first one, the resolution of 

the rasters were adapted based on the point cloud density 

(0.25m, 0.5m, 0.75m, 1.0m, 1.5m and finally 2m) and in the 

second scenario rasters of constant resolution of 0.5 meters 

were used. All newly generated shape files that were the 

output of the classification process were compared to the 

original shape file (reference building data were provided by 

Spatial Informatics Group operating with funding from the 

Tahoe Regional Planning Agency) which contains delineated 

building polygons in order to calculate completes and 

correctness of our results. The completeness of the 

classification was calculated by comparing how many objects 

that were classified as building actually represent buildings. 

The goal was to compare the classification results for the 

object and not the absolute correctness of the polygonal shape.  

 

Figure 4: a) Overview of the test data and b) point cloud 

representing test data 

 
 

 

4 Results 

Extracted polygons were exported into the shapefile (.shp) 

format and accuracy measures were performed using the 

QGIS GIS1. Polygon centroids were derived from the 

extracted polygons and an operation of “point in polygon” 

was performed to calculate if the extracted polygon is 

representing a real building polygon by comparing the 

centroid of the extracted polygon with the building polygons 

in the reference dataset. In the first case the accuracy measure 

is generated for the polygons extracted by using resampled 

point clouds and raster resolution adapted to the point density 

(table 1). In the second case the accuracy measure is generated 

for the polygons extracted by using resampled point clouds 

and raster resolution of 0.5m (table 2). 

                                                                 
1 http:// www.qgis.org/ 
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Table 1 depicts a number of fields. The “Density” column 

represents the density of the point cloud, “Number of 

Polygons” represents the total number of polygons extracted 

with the classification method, “Polygons representing 

buildings” shows how many of extracted polygons represent a 

real building polygon, “Overcount” represents polygons 

which exist due to the over segmentation of a single structure,  

“Polygon noise” shows misclassified polygons, 

“Completeness” represents the percentage of extracted true 

building polygons compared to the actual number of polygons 

based on the ground truth data, “Correctness (Overall)” shows 

percentage of extracted polygons which represent single 

buildings compared to the base data, and “Correctness (from 

extracted)” represents the percentage of correctly classified 

extracted polygons within the obtained data. What can be 

observed from table 1 is that a high level of completeness and 

correctness (above 80%) was achieved only for the point 

cloud with the density of over 18ppsm. Point densities 

between 7-16ppsm show a middle but very stable response 

and everything below 5ppsm shows a very weak response 

(under 35%). On the other hand, if the accuracy of the 

classification from the extracted polygons is observed, it can 

be noticed that almost all the extracted polygons have above 

85% correctness rate.  

In the second case (table 2) the level of completeness is 

stable for the cases from 5-18ppsm and it evolves between the 

values of 48-63%. Everything below the density of 5ppsm 

gave a negative response of 0%. If the Correctness of the 

extracted polygons is observed, it can be noticed that a very 

high response of 100% for all the cases except the last three 

densities below 5ppsm is recorded. 

 

 

5 Discussion & conclusions 

Based on the obtained results two observational streams can 

be identified. In the first case, when the resolution of the data 

is adapted to the point cloud density, it can be observed that 

the high point density (18ppsm) along with very high 

resolution (<0.25m) will provide a high response resulting in 

increased accuracy. On the other hand, lower point cloud 

densities (7-16ppsm), along with lower resolution (0.50m), 

show a stable response when it comes to the accuracy, thus 

providing the option of using any of these since the resulting 

outcome will have no significant change in accuracy. In case 

the resolution is increased further (>0.5m) and decrease the 

point cloud density (<5ppsm) the results are no longer 

promising and the algorithm needs to be adapted to the new 

circumstances (parameter change is required).  

In the second case, when using the same resolution of the 

data and only changing the point cloud densities, it is clear 

that the obtained response is stable for the point cloud 

densities of 5ppsm and above, but below 5ppsm the results are 

 

Table 1: Accuracy results for the first case where the resolution of raster image was adapted to the point cloud density 

 

Shape file – 

(resolution of raster 

in meters) 

Density 

(ppsm) 

Number 

of 

polygons 

Polygons 

representing 

buildings 

Over 

count 

Polygon 

noise 

Completeness 

(%) 

Correctness 

(overall) 

(%) 

Correctness 

(from 

extracted) 

% 

Original Buildings - 187 187 0 0 100.00% 100.00% 100.00% 

Results18-0.25 18 173 154 16 3 90.91% 82.35% 98.27% 

Results16-0.50 16 118 95 18 5 60.43% 50.80% 95.76% 

Results09-0.50 9 118 91 27 0 63.10% 48.66% 100.00% 

Results07-0.50 7 124 90 32 2 65.24% 48.13% 98.39% 

Results05-0.75 5 61 38 23 0 32.62% 20.32% 100.00% 

Results02-1.00 2 31 14 17 0 16.58% 7.49% 100.00% 

Results01-1.50 1 13 6 6 1 6.42% 3.21% 92.31% 

Results005-2.00 0.5 7 6 0 1 3.21% 3.21% 85.71% 

 

Table 2: Accuracy results for the second case where the resolution of raster image was constant at 0.5m 

 

Shape file 
Density 

(ppsm) 

Number 

of 

polygons 

Polygons 

representing 

buildings 

Over 

count 

Polygon 

noise 

Completeness 

(%) 

Correctness 

(overall) 

(%) 

Correctness 

(from 

extracted) 

% 

Original Buildings - 187 187 0 0 100.00% 100.00% 100.00% 

18 18 108 103 5 0 57.75% 55.08% 100.00% 

16 16 109 102 7 0 58.29% 54.55% 100.00% 

9 9 117 110 7 0 62.57% 58.82% 100.00% 

7 7 124 90 34 0 66.31% 48.13% 100.00% 

5 5 129 117 12 0 68.98% 62.57% 100.00% 

2 2 1 0 0 1 0.00% 0.00% 0.00% 

1 1 1 0 0 1 0.00% 0.00% 0.00% 

0.5 0.5 1 0 0 1 0.00% 0.00% 0.00% 
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completely deteriorated and thus make a change in the 

algorithm necessary for such instances.  

Based on the obtained results it can be determined that all 

the point cloud data collected with the point densities of above 

5ppsm and with the resolution higher than 0.5m (if 

rasterisation is applied) can be used with the developed 

classification approach. In these cases the classification 

process will provide similar results thus eliminating the need 

from using more expensive ALS systems which provide very 

high densities for the collected data. The accuracy of the 

extraction when it comes to the internal accuracy of extracted 

objects is very high (>85%) which also shows that the 

developed algorithm proves the usefulness of OBIA 

methodologies when applied to 3D data sources which do not 

mimic human vision. Future work should focus on adapting 

the existing parameters (shape index, rectangular fit, perimeter 

to area ratio, number of returns and intensity)  in order to 

increase the extraction accuracy of the polygons from the data 

so that even higher levels of completeness can be achieved 

through our automated approach. One of the currently 

considered approaches is the usage of Agent Based Modelling 

in order to adapt the parameters automatically based on the 

input data. 
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