
Huerta, Schade, Granell (Eds): Connecting a Digital Europe through Location and Place. Proceedings of the AGILE'2014

International Conference on Geographic Information Science, Castellón, June, 3-6, 2014. ISBN: 978-90-816960-4-3

1 Introduction

Segmentation of a feature set of the same class into several

equitable and non-overlapping1 regions depending on a

feature property is often required especially in the domain of

optimization and spatial decision support. For example, an

evacuation assistance providing authority having 4 emergency

evacuation units (vehicles) might be interested to divide the

whole emergency area into 4 parts in a way that each part

consists of approximately the same number of evacuees and

the bounding polygon of the parts do not overlap so that the

evacuation process ensure optimization. Another practical

need of such segmentation could be apprehended with the

scenario that a service provider wants to cover an area

(neighbourhood) with service centres of same capability. Let

us assume that with the limited resources the service provider

can provide only 4 service centres to cover the neighbourhood

of 205 peoples. In such a case the service provider will be

interested to segment the whole area into 4 regions so that

each region consists of approximately the same number of

people (in this case ~ 51) so that the service centres operates

in an optimized way. Beyond the mentioned examples, a

number of other different application areas could be found

where the need of such a segmentation of a feature set is

inevitable. A more precise definition of the problem that we

address in this paper is given below.

A geographic area G defined by a feature set consisting of n

number of features with a numeric attribute A has to be

completely divided into N (N  ℕ | 2 ≤ N ≤ n) number of

subsets/regions based on following 3 criteria.

 Criteria 1: Each region should consist of a certain number of

complete features of the feature set. A splitting of a feature is

not allowed.

 Criteria 2: The sum of the value of A of all features in any

region Ri must be equal to T ± d [where T is calculated by

summing up the values of A of all n features of the geographic

1
 Non-overlapping regions means the boundaries of the regions are

disjoint or/and in touch with each other.

area G and then divided by N and d is a deviance]. Maximum

value of d is equal to the maximum value of A of any given

feature within G. The deviance d has to be considered as a

splitting of the features is not allowed. Besides, as it may not

possible in all cases of given data sets that the value of the

sum of A of all regions is within T ± d, the number of regions

not following the criteria has to be minimized.

 Criteria 3: The bounding polygon of any region should not

overlap with any other region means it can only touch other

or/and remain as disjoint.

 The main goal of this paper is to present a novel algorithm

(section 3 for more detail) to solve the problem stated herein.

The authors developed the algorithm and successfully

implemented it with c# and ArcObjects library.

Implementation of the algorithm and the results of its

application are discussed in section 4.

2 Related works

Automated zone design (AZD) or regionalisation is a

technique for which Shortt [2] has given the overview of its

concept, terminology and methods. AZD is an umbrella term

for quite a number of approaches to create zones from a set of

basic blocks following given criteria. Among the automated

zone design algorithms automated zone design procedure

(AZP) is the most popular and widely used one. It was

introduced by Openshaw [6, 7]. The AZP has been enhanced

by Openshaw and Rao [8], Alvanides [4] and Alvanides et al

[3]. Cockings et. al. [5] used automated zone design

techniques to dynamically maintain existing zoning systems.

There are also a lot of other application of AZP algorithm

such as climate zoning, location optimization and many more.

The AZP algorithm iteratively combinines and recombines

sets of blocks in order to create output zones which are

optimised based on a set of pre-specified design criteria [8].

 AZP is not applicable to our task described in the

introduction as firstly, AZP is applicable only to continuous

and connected feature sets whereas in our case continuous and

An algorithm for segmenting a feature set into equitable regions

 Md. Imran Hossain

University of the Bundeswehr Munich

Institute for Applied Computer Science

Werner-Heisenberg-Weg 39

85577 Neubiberg, Germany

Imran.Hossain@unibw.de

Wolfgang Reinhardt

University of the Bundeswehr Munich

Institute for Applied Computer Science

Werner-Heisenberg-Weg 39

85577 Neubiberg, Germany

Wolfgang.Reinhardt@unibw.de

Abstract

A set of geographic features of the same class representing a geographic area is often required to be divided in to several subsets/regions

so that the sum of a numeric attribute of the features in each subset/region remains almost equal and the bounding polygon of regions do not
overlap with each other. This kind of non-overlapping regions formation with similar collective feature value is of great importance

especially in the field of optimization and spatial decision support. The paper presents a novel algorithm to solve the above mentioned

spatial analysis work. The algorithm is further implemented, tested and the results are discussed.

Keywords: Spatial algorithm, Spatial Analysis, Vector Segmentation, Equitable Region

AGILE 2014 – Castellón, June 3-6, 2014

discrete feature sets must be treated. Secondly in AZP a zone

can exist in a disconnected multi-polygon form which means a

zone’s bounding polygon may intersect with other zone’s

bounding polygon which is prohibited in our case. Also it is

required in our approach that the bounding polygon of each

region must not overlap with any other region.

The territory design tool of ESRI [1] offers functionality to

create, automatically balance, and maintain territories. The

tool establishes potential franchise areas and assigns sales

territories consisting of multiple variables and levels. Again,

the territory design tool works on continuous and connected

feature sets. Manual intervention is often required to make all

territory balanced. In contrast to the territory design tool, our

goal is to balance the regions (territory in territory design tool)

automatically and to cover discrete feature sets as mentioned

earlier.

3 The algorithm

Firstly, the input, output and criteria of the algorithm are

defined hereafter.

Input:

- Geographic area G = {fn | fn  F (set of features), fn has a

numeric attribute A}

- N (N  ℕ | 2 ≤ N ≤ n) = number of required subsets of G, N

has to be defined by the user.

Output:

- N number of subsets Rn (subsets/regions)

Criteria:

- Region cannot be formed with splitted feature means a

feature of a region is not allowed to be in a form like fi/m | m

ℕ.

- The sum of |A| (|A| is the value of attribute A) of any region

defined herein with O(Ri) = T ± d

- The bounding polygon of any subset BNDline(Ri) do not

overlap with the bounding polygon of any other.

The value of T is calculated by equation 1and the value of d is

an element of set D. The value of d can ranges from 0 to the

maximum value of |A| of a given feature set G (equation 2).

∑

d  D = {q  ℚ | 0 ≤ q < MAX (|A|(G)) }… (2)

In general, the algorithm prioritizes forming regions along the

bounding line BNDline(G) of the input feature set G. This

approach prevents features being unclassified and also prevent

big differences among the regions. A region Ri is formed by

grouping features around the bounding line until O(Ri) = T ±

d. Once no region formation is possible along the

BNDline(G), another bounding line is created for the features

which are not classified into regions and regions are again

formed along the new bounding line. This process continues

until N-1 regions are formed. The Nth region is formed with

remaining unclassified features after formation of N-1th region

and consequently it´s possible that the sum of |A| may not be

within T ± d in this case. The algorithm is described in more

detail through the following steps.

Step1. Objective function: Objective function returns the

value of T on which each region is formed. The algorithm of

the objective function is given by figure 1.

Figure1: Objective function algorithm

Step2. Selection of the starting feature for the first region:
The starting feature for the first region is selected by two

criteria. Firstly, it has to be along the BNDline(G) and

secondly it has to be located in an appropriate corner of G.

Therefore the starting feature is selected by firstly making an

array of features that touches the BNDline(G). Secondly a

feature is picked up from that array and distances are

calculated from that feature to all other features of that array.

The maximum distance is then stored with each picked up

feature. This process is carried out for all features in the array.

Finally, the feature that has the maximum distance value

compared to other features in the array is selected as a starting

feature for the first region formation (fig. 3A). The algorithm

of this step is given in the following figure.

Figure 2: Starting feature selection algorithm

Data: Input FeatureSet G, Attribute A and No. of expected region N
Result: A double value representing T
1 FeatureSetTotal  0
2 for each Feature  FeatureSet do
3 FeatureSetTotal = FeatureSetTotal + |A|
4 return FeatureSetTotal/N

Data: Input FeatureSet G
Result: Feature f
 /* the function for getting the bounding line of a feature set
1 Function BoundLine (FeatureSet)
2 return BoundLine
 /* applying the function to the input feature set
3 BNDline  BoundLine (G)
 /*declaring an empty feature array
4 AlongBNDlineFeatureArray  
 /* adding feature to the array that intersects the bounding line
5 for each Feature  G do
6 if Feature  BNDline do
7 Add Feature to the AlongBNDlineFeatureArray
 /*find the suitable corner feature
8 for each Feature1  AlongBNDlineFeatureArray do
 /* an array for holding the distance between a feature and all
 /*other features of the AlongBNDlineFeatureArray
9 FeatureDiastanceArray  
 /*calculating distances between the a feature and all other
 /* features of the AlongBNDlineFeatureArray
10 for each Feature2  AlongBNDlineFeatureArray do
11 Calculate distance between Feature1 and Feature2
12 Add the distance in the FeatureDiastanceArray
 /*finding the maximum distance for each feature by sorting
 /*the array descending and get the first element
 sort descending FeatureDiastanceArray (distance)
13 MAXVvalue  first element of FeatureDiastanceArray
14 Tag the MAXValue to Feature1
 /*find the feature by sorting AlongBNDlineFeatureArray
 /*discending with regards to the tagged value and get the first
 /* feature of the array
15 sort descending AlongBNDlineFeatureArray (Tagged value)
16 return first element of AlongBNDlineFeatureArray

AGILE 2014 – Castellón, June 3-6, 2014

Step3. Formation of the first region: At the beginning the

first region R1 is formed only with the starting feature. Then

the region is grown by grouping features from G on the basis

of minimum distance, which means a feature from G is

allowed to be grouped with the starting feature if the distance

between them is a minimum compared to the distance of other

features in G (fig. 3B). This grouping or region building is

continued until O(R1) = T ± d criteria is fulfilled. Since a

feature in G is not allowed to divide according to the

underlying data model, it is only possible to completely

include or exclude a feature to a region. Which means the

feature cannot be sliced. So, O(R1) cannot always be exactly

equal to T. The maximum possible deviation of O(R1) with T

for R1 to RN-1 will be thus the maximum value of |A| of any

given G.

Once a region Ri is formed, a static variable StatN is updated

with the number of region formed and the feature set on which

the process will be continued is obtained by G - Ri. The

process terminates and goes out of scope when N-1 = StatN.

For example, if 3 regions are expected and 2 regions have

already been completed then remaining features of G

automatically form a region and the process goes out of scope.

The figure 4 presents the algorithm of Step3.

Figure 4: Algorithm for first region formation

Data: Starting feature
Result: FeatureSet (Region), updated G
 /* static variable for keeping track of the regions
1 RegionFormed = 0
 /*an array of features representing a region
2 RegionFeatureArray  
3 Add starting feature to RegionFeatureArray
 /*declaring an empty feature array
4 FeatureArrayWithDistance  
 /* adding feature to the array with distance to start feature
5 for each Feature  G do
6 Calculate Distance between Feature and Starting Feature
7 Tag Distance to Feature
8 Add Feature with distance to FeatureArrayWithDistance
 /*sorting the array of feature with regard to the distance
9 sort ascending FeatureArrayWithDistance (distance)
 /*adding closest features to the region array until region’s
 /* O(Ri) = T ± d
10 for each Feature  FeatureArrayWithDistance do
11 if |A| of RegionFeatureArray < T do
12 Add Feature to RegionFeatureArray
13 else do
14 finalize RegionFeatureArray
15 RegionFormed = RegionFormed +1
 /*returning the region and updated G
16 return RegionFeatureArray

17 return G  G - RegionFeatureArray

Figure 3: Visual illustration of different steps of the algorithm

The features with gray color touch the bounding line (black

line). For each gray feature distance to other gray features are
measured and the maximum is stored. The maximum of gray

feature 1 (thicker line) is higher than the maximum of gray

feature 2 (thicker line). Thus the gray feature whose
maximum is the highest is selected as starting feature

A

1

A region (feature set with gray color) is formed by aggregating

features from G with starting feature based on closest distance

B

A feature (dark gray) from G is selected as a start feature for

subsequent region building if it is closest to the bounding
line of (thick dotted line) previously formed region and

touches the bounding line of the input feature set G

C

2

D

All the features along the bounding line (outer black line) of G

are classified into regions. A second bounding line (inner black

line) is formed for the unclassified features.

AGILE 2014 – Castellón, June 3-6, 2014

Step4. Start feature selection for subsequent regions: As

stated earlier, the algorithm prioritizes forming regions along

the bounding line BNDline(G) of the input feature set G.

Therefore, a start feature for any subsequent region Ri+1

should be located next to the former region Ri and also should

touch the BNDline(G) (fig. 3C). These are two simple criteria

for selecting a start feature for any subsequent region

building. The algorithm of this step is given in next page with

figure 5.

Figure 5: Algorithm for start feature for subsequent regions

Step5. Repetition: Step 3 to 4 are repeated until no start

feature is returned by step 4 and the required number of

regions is still not achieved. A null feature return by step 4

means all the features along the bounding line of G are

classified into regions. If this is the case, a new bounding line

is created for the set of non-classified features (fig. 3D). The

BNDline(G) which is created in step2 is replaced by the new

bounding line and the process starts continuing from step 2.

4 Implementation, application and results

The algorithm we presented in section 3 has been

implemented using c# programming language and ArcObjects

library of ESRI. Figure 6 and 7 shows the result of 2 examples

of an application of the implemented algorithm. Each feature

(polygon) in both figures represents residential buildings and

has an attribute called population (no. of residents). The

maximum value of d of the input feature set was 21.

In figure 6, the expected number of equitable regions was 3

based on the population attribute which means the feature set

has to be divided into 3 non-overlapping regions so that the

total population for each region remains approximately equal.

In figure 7 the expected region number was 7. Both figures

show a distinct division of the feature set into regions. None

of the region in both figure overlap with others. However, the

shape of the regions gets more irregular with the increase

number of regions (fig.7). The important point to be noted

here is that region no.0 in both figures differs significantly

from other regions in terms of total population and the

difference goes beyond the MAX(d) in figure 7. The

differences among other regions are minimal and within

MAX(d).

Figure 6: Input feature set G divided into 3 equitable regions

Figure 7: Input feature set G divided into 7 equitable regions

Region 0 is in fact the last region formed with the remaining

feature set once N-1 regions are formed. If the other regions

formed with a positive value of d (section 3, step 3) then the

effect goes on to the last Nth region (region 0) which is forced

to be formed with a total value deduced by the cumulative

positive d of the former regions. Thus only the Nth region’s

O(Rn) may not be equal to T ± d. The maximum difference

between the last region’s O(Rn) with other regions O(Ri) is

thus expected to be higher with the increased no. of regions.

However, this problem can be solved with a constraint that

two consecutive regions should form with +d and –d

simultaneously which restricts region formation with always

+d or –d.

Another important point to be noted here that theoretically,

a feature set may contain several features which are suitable

as starting feature for the formation of first region (step 2,

section 3). Selection of each of those suitable features as a

start feature would results a different form of the output

regions in terms of region’s O(Ri) and shape. The algorithm

Data: Feature Set Ri (last region), updated G
Result: Feature f
 /* the function for getting the bounding line of a feature set
1 Function BoundLine (FeatureSet)
2 return BoundLine
 /* applying the function to the input region feature set gi
3 BNDline_Ri  BoundLine (Ri)
 /* applying the function to the feature set G
4 BNDline_G  BoundLine (G)
 /*declaring an empty feature array
5 FeatureSet_near_ BNDline_Ri  
 /* adding feature from G to the array that are with a certain
 /* distance (5m) from the BNDline_Ri
6 for each Feature  G do
7 if Feature is within 5m of BNDline_Ri do
8 Calculate distance from Feature to BNDline_Ri
9 Tag distance to Feature
10 Add Feature to the FeatureSet_near_ BNDline_Ri
 /*sort FeatureSet_near_ BNDline_Ri in ascending way so that
 /* the feature with shortest distance comes first in a loop
11 sort ascending FeatureSet_near_ BNDline_Ri (distance)
 /*find the start feature
12 for each Feature  FeatureSet_near_ BNDline_Ri do
13 if Feature touches BNDline_G do
14 return Feature

AGILE 2014 – Castellón, June 3-6, 2014

restricts different output possibilities by automatically

selecting the best starting feature. But the algorithm could be

adopted for allowing the selection of alternative suitable

features for obtaining variations in output regions.

5 Conclusion and future works

The paper presented an algorithm for segmenting a feature set

into multiple equitable non-overlapping regions and its

implementation and the result of its application are discussed.

As a first attempt the algorithm has been developed and

implemented to deal with polygon and point features set. Due

to the limited space examples of point feature sets are not

discussed in this paper. Several tests have proven its

applicability. The applicability could be extended to polyline

features set in future with limited effort. At present the

algorithm is dealing with a single attribute and regions are

formed based on a value which is approximately equal for

each region. As a future work the algorithm could be extended

to deal with multiple attributes and other statistical parameters

e.g. regions could be formed based on equal standard

deviation of one or multiple attributes. The algorithm could be

enriched by introducing constraints e.g. region formation can

be restricted to cross certain types of roads and other

geographical features. Moreover, spatial indexing could be

applied to improve computing time for large input datasets.

References

[1] ESRI. White paper on territory design. Redlands, USA,

2010.

[2] N. Shortt. Regionalization/zoning systems. In R. Kitchin

and N. Thrift, editors, International Encyclopedia of

Human Geography, pages 298--301. Elsevier, Oxford,

2009.

[3] S. Alvanides, S. Openshaw and P. Rees. Designing your

own geographies. In P. Rees, D. Martin and P.

Williamson, editors, The Census Data System, pages

47—65. JohnWiley, Chichester, Sussex, 2002.

[4] S. Alvanides. Zone Design Methods for Application in

Human Geography. PhD thesis, School of Geography,

University of Leeds, 2000.

[5] S. Cockings, A. Harfoot, D. Martin and D. Hornby.

Maintaining existing zoning systems using automated

zone-design techniques: methods for creating the 2011

Census output geographies for England and Wales.

Journal of Environment and Planning, A 2011, volume

43: 2399 - 2418, 2011.

[6] S. Openshaw. A geographical solution to scale and

aggregation problems in region-building, partitioning

and spatial modeling. Transactions of the Institute of

British Geographers, New Series 2, 1977.

[7] S. Openshaw. Algorithm 3: a procedure to generate

pseudo-random aggregations of N zones into M zones,

where M is less than N. Journal of Environment and

Planning, A 9: 1423-1428, 1977.

[8] S. Openshaw and L. Rao. Algorithms for re-engineering

1991 Census geography. Journal of Environment and

Planning, A 27: 425 - 446, 1995.

