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1 Introduction  

Segmentation of a feature set of the same class into several 

equitable and non-overlapping1 regions depending on a 

feature property is often required especially in the domain of 

optimization and spatial decision support. For example, an 

evacuation assistance providing authority having 4 emergency 

evacuation units (vehicles) might be interested to divide the 

whole emergency area into 4 parts in a way that each part 

consists of approximately the same number of evacuees and 

the bounding polygon of the parts do not overlap so that the 

evacuation process ensure optimization.  Another practical 

need of such segmentation could be apprehended with the 

scenario that a service provider wants to cover an area 

(neighbourhood) with service centres of same capability. Let 

us assume that with the limited resources the service provider 

can provide only 4 service centres to cover the neighbourhood 

of 205 peoples. In such a case the service provider will be 

interested to segment the whole area into 4 regions so that 

each region consists of approximately the same number of 

people (in this case ~ 51) so that the service centres operates 

in an optimized way. Beyond the mentioned examples, a 

number of other different application areas could be found 

where the need of such a segmentation of a feature set is 

inevitable. A more precise definition of the problem that we 

address in this paper is given below. 

A geographic area G defined by a feature set consisting of n 

number of features with a numeric attribute A has to be 

completely divided into N (N  ℕ | 2 ≤ N ≤ n) number of 

subsets/regions based on following 3 criteria.  

   Criteria 1: Each region should consist of a certain number of 

complete features of the feature set. A splitting of a feature is 

not allowed. 

   Criteria 2: The sum of the value of A of all features in any 

region Ri must be equal to T ± d [where T is calculated by 

summing up the values of A of all n features of the geographic 

                                                                 
1
 Non-overlapping regions means the boundaries of the regions are 

disjoint or/and in touch with each other. 

area G and then divided by N and d is a deviance]. Maximum 

value of d is equal to the maximum value of A of any given 

feature within G. The deviance d has to be considered as a 

splitting of the features is not allowed. Besides, as it may not 

possible in all cases of given data sets that the value of the 

sum of A of all regions is within T ± d, the number of regions 

not following the criteria has to be minimized.  

   Criteria 3: The bounding polygon of any region should not 

overlap with any other region means it can only touch other 

or/and remain as disjoint.  

   The main goal of this paper is to present a novel algorithm 

(section 3 for more detail) to solve the problem stated herein. 

The authors developed the algorithm and successfully 

implemented it with c# and ArcObjects library. 

Implementation of the algorithm and the results of its 

application are discussed in section 4.  

 

 

2 Related works 

Automated zone design (AZD) or regionalisation is a 

technique for which Shortt [2] has given the overview of its 

concept, terminology and methods. AZD is an umbrella term 

for quite a number of approaches to create zones from a set of 

basic blocks following given criteria. Among the automated 

zone design algorithms automated zone design procedure 

(AZP) is the most popular and widely used one. It was 

introduced by Openshaw [6, 7]. The AZP has been enhanced 

by Openshaw and Rao [8], Alvanides [4] and Alvanides et al 

[3]. Cockings et. al. [5] used automated zone design 

techniques to dynamically maintain existing zoning systems. 

There are also a lot of other application of AZP algorithm 

such as climate zoning, location optimization and many more. 

The AZP algorithm iteratively combinines and recombines 

sets of blocks in order to create output zones which are 

optimised based on a set of pre-specified design criteria [8]. 

 AZP is not applicable to our task described in the 

introduction as firstly, AZP is applicable only to continuous 

and connected feature sets whereas in our case continuous and 

An algorithm for segmenting a feature set into equitable regions  

 Md. Imran Hossain 

University of the Bundeswehr Munich 

Institute for Applied Computer Science 

Werner-Heisenberg-Weg 39 

85577 Neubiberg, Germany 

Imran.Hossain@unibw.de 

Wolfgang Reinhardt 

University of the Bundeswehr Munich 

Institute for Applied Computer Science 

Werner-Heisenberg-Weg 39 

85577 Neubiberg, Germany 

Wolfgang.Reinhardt@unibw.de 

 

Abstract 

A set of geographic features of the same class representing a geographic area is often required to be divided in to several subsets/regions 

so that the sum of a numeric attribute of the features in each subset/region remains almost equal and the bounding polygon of regions do not 
overlap with each other. This kind of non-overlapping regions formation with similar collective feature value is of great importance 

especially in the field of optimization and spatial decision support. The paper presents a novel algorithm to solve the above mentioned 

spatial analysis work. The algorithm is further implemented, tested and the results are discussed.    
 

Keywords: Spatial algorithm, Spatial Analysis, Vector Segmentation, Equitable Region 



AGILE 2014 – Castellón, June 3-6, 2014 

 

discrete feature sets must be treated. Secondly in AZP a zone 

can exist in a disconnected multi-polygon form which means a 

zone’s bounding polygon may intersect with other zone’s 

bounding polygon which is prohibited in our case. Also it is 

required in our approach that the bounding polygon of each 

region must not overlap with any other region. 

The territory design tool of ESRI [1] offers functionality to 

create, automatically balance, and maintain territories. The 

tool establishes potential franchise areas and assigns sales 

territories consisting of multiple variables and levels. Again, 

the territory design tool works on continuous and connected 

feature sets. Manual intervention is often required to make all 

territory balanced. In contrast to the territory design tool, our 

goal is to balance the regions (territory in territory design tool) 

automatically and to cover discrete feature sets as mentioned 

earlier. 

 

 

3 The algorithm 

Firstly, the input, output and criteria of the algorithm are 

defined hereafter.  

 

Input: 

- Geographic area G = {fn | fn  F (set of features), fn has a 

numeric attribute A}  

- N (N  ℕ | 2 ≤ N ≤ n) = number of required subsets of G, N 

has to be defined by the user.  

 

Output:  

- N number of subsets Rn (subsets/regions)  

 

Criteria: 

- Region cannot be formed with splitted feature means a 

feature of a region is not allowed to be in a form like fi/m | m 

ℕ.  

- The sum of |A| (|A| is the value of attribute A) of any region 

defined herein with O(Ri) = T ± d  

- The bounding polygon of any subset BNDline(Ri) do not 

overlap with the bounding polygon of any other.  

 

The value of T is calculated by equation 1and the value of d is 

an element of set D. The value of d can ranges from 0 to the 

maximum value of |A| of a given feature set G (equation 2). 

 

   
∑       

  
   

 
                      

 

d  D = {q  ℚ | 0 ≤ q < MAX (|A|(G)) }…        (2)  

 

In general, the algorithm prioritizes forming regions along the 

bounding line BNDline(G) of the input feature set G. This 

approach prevents features being unclassified and also prevent 

big differences among the regions. A region Ri is formed by 

grouping features around the bounding line until O(Ri) = T ± 

d. Once no region formation is possible along the 

BNDline(G), another bounding line is created for the features 

which are not classified into regions and regions are again 

formed along the new bounding line. This process continues 

until N-1 regions are formed. The Nth region is formed with 

remaining unclassified features after formation of N-1th region 

and consequently it´s possible that the sum of |A| may not be 

within T ± d in this case. The algorithm is described in more 

detail through the following steps.  

 

Step1. Objective function: Objective function returns the 

value of T on which each region is formed. The algorithm of 

the objective function is given by figure 1.  

 

Figure1: Objective function algorithm 

 
 

Step2. Selection of the starting feature for the first region: 
The starting feature for the first region is selected by two 

criteria. Firstly, it has to be along the BNDline(G) and 

secondly it has to be located in an appropriate corner of G. 

Therefore the starting feature is selected by firstly making an 

array of features that touches the BNDline(G). Secondly a 

feature is picked up from that array and distances are 

calculated from that feature to all other features of that array. 

The maximum distance is then stored with each picked up 

feature. This process is carried out for all features in the array. 

Finally, the feature that has the maximum distance value 

compared to other features in the array is selected as a starting 

feature for the first region formation (fig. 3A). The algorithm 

of this step is given in the following figure.  

 

Figure 2: Starting feature selection algorithm 

 

 

 

 
Data: Input FeatureSet G, Attribute A and No. of expected region N 
Result: A double value representing T 
1     FeatureSetTotal  0 
2     for each Feature  FeatureSet do 
3          FeatureSetTotal = FeatureSetTotal + |A|  
4     return FeatureSetTotal/N 

 

 

 

 

 

 
Data: Input FeatureSet G 
Result: Feature f  
       /* the function for getting the bounding line of a feature set 
1     Function BoundLine (FeatureSet) 
2          return BoundLine 
      /* applying the function to the input feature set 
3     BNDline  BoundLine (G) 
      /*declaring an empty feature array 
4     AlongBNDlineFeatureArray   
      /* adding feature to the array that intersects the bounding line 
5     for each Feature  G do 
6          if Feature  BNDline do 
7               Add Feature to the AlongBNDlineFeatureArray 
       /*find the suitable corner feature 
8     for each Feature1  AlongBNDlineFeatureArray do 
            /* an array for holding the distance between a feature and all  
            /*other features of the AlongBNDlineFeatureArray 
9        FeatureDiastanceArray   
            /*calculating distances between the a feature and all other  
            /* features of the AlongBNDlineFeatureArray 
10        for each Feature2  AlongBNDlineFeatureArray do 
11             Calculate distance between Feature1 and Feature2  
12             Add the distance in the FeatureDiastanceArray 
            /*finding the maximum distance for each feature by sorting  
            /*the array descending and get the first element  
            sort descending FeatureDiastanceArray (distance) 
13        MAXVvalue  first element of FeatureDiastanceArray  
14        Tag the MAXValue to Feature1 
       /*find the feature by sorting AlongBNDlineFeatureArray  
       /*discending with regards to the tagged value and get the first  
       /* feature of the array  
15   sort descending AlongBNDlineFeatureArray (Tagged value) 
16   return first element of AlongBNDlineFeatureArray 
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Step3. Formation of the first region: At the beginning the 

first region R1 is formed only with the starting feature. Then 

the region is grown by grouping features from G on the basis 

of minimum distance, which means a feature from G is 

allowed to be grouped with the starting feature if the distance 

between them is a minimum compared to the distance of other 

features in G (fig. 3B). This grouping or region building is 

continued until O(R1) = T ± d criteria is fulfilled. Since a 

feature in G is not allowed to divide according to the 

underlying data model, it is only possible to completely 

include or exclude a feature to a region. Which means the 

feature cannot be sliced. So, O(R1)  cannot always be exactly 

equal to T. The maximum possible deviation of O(R1) with T 

for R1 to RN-1 will be thus the maximum value of |A| of any 

given G.  

Once a region Ri is formed, a static variable StatN is updated 

with the number of region formed and the feature set on which 

the process will be continued is obtained by G - Ri. The 

process terminates and goes out of scope when N-1 = StatN. 

For example, if 3 regions are expected and 2 regions have 

already been completed then remaining features of G 

automatically form a region and the process goes out of scope. 

The figure 4 presents the algorithm of Step3. 

 

Figure 4: Algorithm for first region formation 

 

 

 

 
Data: Starting feature 
Result: FeatureSet (Region), updated G  
      /* static variable for keeping track of the regions 
1     RegionFormed = 0 
       /*an array of features representing a region 
2     RegionFeatureArray   
3     Add starting feature to RegionFeatureArray         
      /*declaring an empty feature array 
4     FeatureArrayWithDistance   
      /* adding feature to the array with distance to start feature 
5     for each Feature  G do 
6          Calculate Distance between Feature and Starting Feature 
7          Tag Distance to Feature 
8          Add Feature with distance to FeatureArrayWithDistance 
       /*sorting the array of feature with regard to the distance 
9     sort ascending FeatureArrayWithDistance (distance) 
       /*adding closest features to the region array until region’s 
       /* O(Ri) = T ± d 
10   for each Feature  FeatureArrayWithDistance do 
11        if |A| of RegionFeatureArray < T do  
12               Add Feature to RegionFeatureArray 
13        else do 
14               finalize RegionFeatureArray 
15               RegionFormed = RegionFormed +1 
      /*returning the region and updated G 
16   return RegionFeatureArray  

17   return G  G - RegionFeatureArray  
 

 

Figure 3: Visual illustration of different steps of the algorithm 

 

The features with gray color touch the bounding line (black 

line). For each gray feature distance to other gray features are 
measured and the maximum is stored. The maximum of gray 

feature 1 (thicker line) is higher than the maximum of gray 

feature 2 (thicker line). Thus the gray feature whose 
maximum is the highest is selected as starting feature  

A   

1   

A region (feature set with gray color) is formed by aggregating 

features from G with starting feature based on closest distance   

B   

A feature (dark gray) from G is selected as a start feature for 

subsequent region building if it is closest to the bounding 
line of (thick dotted line) previously formed region and 

touches the bounding line of the input feature set G 

C   

2   

D   

All the features along the bounding line (outer black line) of G 

are classified into regions. A second bounding line (inner black 

line) is formed for the unclassified features.    



AGILE 2014 – Castellón, June 3-6, 2014 

 

Step4. Start feature selection for subsequent regions: As 

stated earlier, the algorithm prioritizes forming regions along 

the bounding line BNDline(G) of the input feature set G. 

Therefore, a start feature for any subsequent region Ri+1 

should be located next to the former region Ri and also should 

touch the BNDline(G) (fig. 3C). These are two simple criteria 

for selecting a start feature for any subsequent region 

building. The algorithm of this step is given in next page with 

figure 5. 

 

Figure 5: Algorithm for start feature for subsequent regions  

 
 

Step5. Repetition: Step 3 to 4 are repeated until no start 

feature is returned by step 4 and the required number of 

regions is still not achieved. A null feature return by step 4 

means all the features along the bounding line of G are 

classified into regions. If this is the case, a new bounding line 

is created for the set of non-classified features (fig. 3D). The 

BNDline(G) which is created in step2 is replaced by the new 

bounding line and the process starts continuing from step 2. 

 

 

4 Implementation, application and results 

The algorithm we presented in section 3 has been 

implemented using c# programming language and ArcObjects 

library of ESRI. Figure 6 and 7 shows the result of 2 examples 

of an application of the implemented algorithm. Each feature 

(polygon) in both figures represents residential buildings and 

has an attribute called population (no. of residents). The 

maximum value of d of the input feature set was 21. 

In figure 6, the expected number of equitable regions was 3 

based on the population attribute which means the feature set 

has to be divided into 3 non-overlapping regions so that the 

total population for each region remains approximately equal. 

In figure 7 the expected region number was 7. Both figures 

show a distinct division of the feature set into regions. None 

of the region in both figure overlap with others. However, the 

shape of the regions gets more irregular with the increase 

number of regions (fig.7).  The important point to be noted 

here is that region no.0 in both figures differs significantly 

from other regions in terms of total population and the 

difference goes beyond the MAX(d) in figure 7. The 

differences among other regions are minimal and within 

MAX(d).  

 

Figure 6: Input feature set G divided into 3 equitable regions 

 
 

Figure 7: Input feature set G divided into 7 equitable regions 

 
 

Region 0 is in fact the last region formed with the remaining 

feature set once N-1 regions are formed. If the other regions 

formed with a positive value of d (section 3, step 3) then the 

effect goes on to the last Nth region (region 0) which is forced 

to be formed with a total value deduced by the cumulative 

positive d of the former regions. Thus only the Nth region’s 

O(Rn) may not be equal to T ± d. The maximum difference 

between the last region’s O(Rn) with other regions O(Ri)  is 

thus expected to be higher with the increased no. of regions. 

However, this problem can be solved with a constraint that 

two consecutive regions should form with +d and –d 

simultaneously which restricts region formation with always 

+d or –d. 

Another important point to be noted here that theoretically, 

a feature set may contain several features which are suitable 

as starting feature for the formation of first region (step 2, 

section 3). Selection of each of those suitable features as a 

start feature would results a different form of the output 

regions in terms of region’s O(Ri) and shape. The algorithm 

 

 

Data: Feature Set Ri (last region), updated G 
Result: Feature f 
      /* the function for getting the bounding line of a feature set 
1     Function BoundLine (FeatureSet) 
2          return BoundLine 
      /* applying the function to the input region feature set gi 
3     BNDline_Ri  BoundLine (Ri) 
      /* applying the function to the feature set G 
4     BNDline_G  BoundLine (G) 
      /*declaring an empty feature array 
5     FeatureSet_near_ BNDline_Ri   
      /* adding feature from G to the array that are with a certain  
      /* distance (5m) from the BNDline_Ri  
6     for each Feature  G do 
7          if Feature is within 5m of BNDline_Ri do 
8               Calculate distance from Feature to BNDline_Ri 
9               Tag distance to Feature 
10             Add Feature to the FeatureSet_near_ BNDline_Ri 
       /*sort FeatureSet_near_ BNDline_Ri in ascending way so that 
       /* the feature with shortest distance comes first in a loop 
11   sort ascending FeatureSet_near_ BNDline_Ri (distance) 
       /*find the start feature 
12   for each Feature  FeatureSet_near_ BNDline_Ri do 
13         if Feature touches BNDline_G do 
14                return Feature 
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restricts different output possibilities by automatically 

selecting the best starting feature. But the algorithm could be 

adopted for allowing the selection of alternative suitable 

features for obtaining variations in output regions.      

  

5 Conclusion and future works 

The paper presented an algorithm for segmenting a feature set 

into multiple equitable non-overlapping regions and its 

implementation and the result of its application are discussed. 

As a first attempt the algorithm has been developed and 

implemented to deal with polygon and point features set. Due 

to the limited space examples of point feature sets are not 

discussed in this paper. Several tests have proven its 

applicability. The applicability could be extended to polyline 

features set in future with limited effort. At present the 

algorithm is dealing with a single attribute and regions are 

formed based on a value which is approximately equal for 

each region. As a future work the algorithm could be extended 

to deal with multiple attributes and other statistical parameters 

e.g. regions could be formed based on equal standard 

deviation of one or multiple attributes. The algorithm could be 

enriched by introducing constraints e.g. region formation can 

be restricted to cross certain types of roads and other 

geographical features. Moreover, spatial indexing could be 

applied to improve computing time for large input datasets.    
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