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1 Introduction and motivation 

The increasing amount of geospatial data that is available 

from new and existing sources has inspired numerous 

businesses, (non-)governmental initiatives and research 

projects to explore ways to utilize it. The heterogeneity of data 

sources and diverse processing histories imply issues of 

syntactic and semantic interoperability. Hence, many research 

initiatives and projects aim to improve data interoperability. 

Many tackle the problem with a bottom-up approach by 

developing proprietary solutions for specific business 

problems (e.g. Xively1, Gigwalk2, Jana3), or by developing 

open-source solutions that allow syntactical (e.g. GDAL4, 

Web 2.0 Broker5), or semantical (e.g. HALE6) translation 

between concrete data sources, formats and standards. Most of 

these have a decidedly technical perspective on standards for 

data formats and data exchange protocols. Others approaches 

address the problem top-down and aim to develop new 

standards that facilitate discovery, view and analysis of 

heterogeneous data sources. The resulting standards address 

interoperability on a technical level (e.g. OGC7, ISO8, [9]), on 

a semantic level (e.g. common vocabularies and code lists, 

e.g. DublinCore9), but also on a governance and legal level 

(INSPIRE10, ISA11). 

                                                                 
1 https://xively.com/ 
2 http://gigwalk.com/ 
3 http://www.jana.com/ 
4 http://www.gdal.org/ 
5 http://www.geotec.uji.es/web-2-0-broker-service/ 
6 http://www.esdi-community.eu/projects/show/hale 
7 http://www.opengeospatial.org/ 
8 http://www.isotc211.org/ 
9 http://dublincore.org/ 
10 http://inspire.jrc.ec.europa.eu/ 

These two perspectives have resulted in substantial 

advances in science and operational systems. Still, all these 

efforts face the problem of ensuring interoperability among 

themselves. It is already difficult to keep track of the past and 

ongoing efforts, let alone to coordinate them. Although mostly 

adhering to common data exchange standards, the projects and 

initiatives originate from various academic, administrative or 

entrepreneurial backgrounds, and thus do not always share 

ideas of and approaches to interoperability. Furthermore, 

while opening existing data silos in formerly closed spatial 

data infrastructures (SDI), new silos are created as part of the 

process - both vertically (e.g. through incompatible 

organizations), and horizontally (e.g. through incompatible 

service buses or middleware).  

The interoperability issue is aggravated by the fast-moving 

technological landscape: (1) new opportunities (read: 

platforms) emerge quickly, while others are abandoned (e.g. 

Gowalla12) or face an uncertain future (e.g. Foursquare13); (2) 

many web portals are no longer maintained after funding 

stopped, but many diverse  government portals offers data [3]; 

(3) out of the numerous citizen science projects (see Sci-

Starter14 and Zooniverse15 platforms and JRC Citizen Science 

and Smart Cities 2014 Summit16), many come with 

proprietary software applications; and (4) initiatives such as 

INSPIRE move slowly because of the legislative requirements 

and number of partners involved, and have difficulty adapting 

                                                                                                    
11 http://ec.europa.eu/isa/ 
12

 http://blog.gowalla.com/ 
13 http://www.foursquare.com/ 
14 http://scistarter.com/ 
15 https://www.zooniverse.org/ 
16

 http://ies.jrc.ec.europa.eu/DE/derdu-latest-news/sdi-

workshops/citizens-science-and-smart-cities-summit.html 
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to new technological developments, e.g. linked open data (for 

a discussion of differences, see Portele, C.17).  

This paper offers an original perspective on the problem 

outlined above by extending and revising the conceptual 

model of a Digital Earth Nervous System (DENS) with the 

process of Multi-Sensory Integration (MSI), drawing on rich 

research from the cognitive and neuro-sciences, as well as 

sensor data fusion from engineering. The aims are threefold: 

(i) to stimulate and enrich the debate on interoperability for 

geospatial data; (ii) to increase understanding of the various 

interactions between geospatial data collection, 

transformation, processing and usage on a global scale; and 

(iii) to show potential future research foci. The DENS-MSI 

should be able to serve as a possible reference and orientation 

for existing approaches and projects to increase mutual 

understanding of interoperability challenges and how to deal 

with conflicting information in a decision-making 

environment.  

The paper is not trying to create a conceptual or logical 

model which is complete (and overly complex) and suitable 

for every circumstance and situation possible. Instead it 

focusses on in-situ sensory and citizens’ observations and 

aims to be simple, extensible (open world assumption), and 

cover the majority of cases. Neither is it meant to promote a 

21st century version of the Gaia hypothesis, from which the 

authors would like to distance themselves.  

In the next section, this paper gives a short introduction to 

and critique of the original Digital Earth Nervous System, and 

its reception and usage since then. The section following it 

briefly explains the background of the MSI concept, which is 

one focus of this paper’s extension of the previously 

suggested DENS. The last section of the paper sketches a 

possible integration of the DENS and MSI, and paths for 

future research. 

 

2 A Digital Earth Nervous System 

The DENS concept was originally formulated by 

DeLongueville et al. [5]. It draws an analogy to the human 

nervous system in order to describe and understand the 

processing of inputs from geospatial sensors (compare Figure 

1). Here, many types of digital data and information with a 

geographic component can form sensory input (stimuli in 

Figure 1), i.e. the sensory input can range from remotely 

sensed spectral information of the earth’s surface to geo-

locatable text messages that are exchanged between citizens.  

The great strength of this approach lies in its unifying vision 

of treating all geospatial information as potential input. It 

acknowledges the rise of volunteered geographic information 

[6, 8] and sensor networks of cheap and wireless hardware 

(e.g. Zigbee18, Raspberry Pi19), and the need for utilizing it 

together with authoritative data from SDIs (see SDI cookbook 

chapter 1020), e.g. as part of quality assurance procedures. It 

                                                                 
17

 
http://www.pilod.nl/index.php?title=Boek/Portele#Technical_

Comparison_of_Linked_Data_and_INSPIRE 
18 https://www.zigbee.org/ 
19 http://www.raspberrypi.org/ 
20

 
http://www.gsdidocs.org/GSDIWiki/index.php/Chapter_10 

also provides suggestions for methods to collect and store this 

heterogeneous geospatial information, focusing on the OGC 

Sensor Web Enablement (SWE) standard [2]. 

 

Figure 1: Overview of DENS. 

 
Source: The authors. 

 

Several studies have drawn on or from the DENS concept, 

e.g. a functional integration approach for the sensor web [18] 

and a way to sense VGI for disaster management [19]. These 

studies show that the DENS concept offers a valuable 

perspective to create original and successful ways to interact 

and use the various information provided. It is a reasonable 

assumption that developments such as cloud computing21 and 

linked open data [1, 4] will improve feasibility of a DENS 

implementation. 

However, some of the studies also showed that the DENS 

analogy is not suitable for all cases, or the data cannot be 

clearly assigned to every phase. For example, not all detailed 

phases of sensor processing proposed in [5] were applicable in 

[16]. Further, the SWE suite of standards is rather complex to 

implement and will not be the method of choice for many 

potential VGI sources – although lightweight RESTful 

implementations are in development [13].  

The envisioned treatment of the uncertainty of VGI is 

another shortcoming. DeLongueville et al. [5] originally 

suggest that VGI needs to be validated before it is made 

available as an observation, but do not propose possible 

implementations. The current DENS approach cannot explain 

conflicting sensor inputs, e.g. the presence of Tweets about 

forest fires in an area for which remote sensing does not 

indicate any hot spots [20]. The human cognitive system has 

developed methods to deal with conflicting multi-sensory 

input. Contradictory sensor input can be resolved at the level 

of raw sensor data (stimuli and sensations) in order to check 

for obvious errors in sensor readings with the potential result 

of a re-calibration. An alternate opportunity addresses 

conflicts at the level of perceptions, potentially resulting in the 

re-evaluation of a perception. 

For the latter, Spinsanti and Ostermann [20] successfully 

adapted an argument by Flanagin and Metzger [7] on the 

heuristics that humans use to deal with uncertain information: 

by looking into other sources (“What do others say?”) and 

comparing the new information with existing knowledge 

                                                                 
21 http://www.nist.gov/itl/cloud/ 
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(“What do I already know?”). However, the resulting method 

(GeoCONAVI) shows that currently it is computationally 

most expensive in the early stages to reduce noise, yet the 

most significant improvement on information quality occurs 

at the later stages of the processing chain, when the 

information had already been consolidated and clustered [16]. 

Multi-Sensory Integration might provide a solution for an 

early validation and treatment of inconsistent sensor input. We 

explore this option in the next section. 

 

3 Multi-Sensory Integration 

Multi-sensory integration (MSI) – also known as multi-modal 

integration – encompasses the process of combining the 

information from different sensory systems, such as visual, 

audio, tactile, olfactory, taste and interoception22 by the 

nervous system. It is thus a crucial process without which 

there would be no coherent representation of the environment, 

and no interpretable perceptual experience. Therefore, it is 

also the prerequisite for any adaptive behavior and response to 

the environment. An important aspect of human MSI is the 

mutual feedback between sensory systems. Research has 

shown that for example visual and auditive systems influence 

each other, i.e. a strong signal on one “channel” can alter the 

perception of the other.  

The nervous system integrates or segregates groups of 

sensory signals based on three major principles of multi-

sensory integration: spatial proximity, temporal proximity, 

and inverse effectiveness. The first two are analogous to 

Tobler’s First Law, while the inverse effectiveness supports 

an assumption that is present in the work of Spinsanti and 

Ostermann [20], i.e. that multiple sensor readings from 

different but weak sensors can together result in a valid and 

coherent perception. Thus, MSI results in decreased sensory 

uncertainty. Another desirable effect are decreased reaction 

times – while a system might need many stimuli from just one 

sensor, fewer stimuli from many sensors can lead to the same 

conclusion. 

There are several approaches to explaining human MSI, 

such as visual dominance, modality appropriateness, and 

Bayesian integration [21]. Especially the latter might integrate 

well with spatio-temporal data handling. A major challenge 

for Bayesian integration is the assignment of probabilities of 

conditions to observed stimuli.  

In the field of sensor engineering, the research area of 

sensor data or information fusion has already seen a lot of 

activity [14]. The majority of research until now has focused 

on low-level abstracted sensor data, i.e. low-dimensional, 

continuous data from sensors with a known uncertainty, on 

data fusion from several but similar sensors, or on different 

but related sensors in close spatial proximity (e.g. robotics). 

The integration of heterogeneous sensors covering irregular 

areas, e.g. wireless sensor networks from citizens or geosocial 

network data (hard/soft data integration from disparate sensors 

in the terminology of [14]) has seen less activity.  

The following section will investigate how these concepts 

from cognitive science and information fusion could be 

fruitful motivations for future research in the areas of 

(geo)sensor web and (geo)social networks. 

                                                                 
22 sensitivity to stimuli originating inside of the body;  

4 Design and implementation of a DENS 

In this section, we show how concepts and theories from 

neuroscience and robotics can contribute to an overall 

understanding and improvement of geospatial data 

interoperability on a global scale. We directly build on 

previous work on DENS, which only addressed observations 

from a single source and sequences of data flows. 

The following Figure 2 shows an extended and revised 

DENS-MSI and contains all the elements and processes we 

will discuss. As we will argue, this raises three main 

challenges: first, the choice of senses (sensors) and their 

interoperability; second, the choice of memory (geospatial 

data sets); and third, the choice of actual MSI methods. 

It all begins with an observable change in the environment, 

for example, in the case of a forest fire remote sensing, 

satellites can detect higher temperatures on the ground, smoke 

plumes, and citizens and practitioners on the ground begin to 

discuss and share information. This creates stimuli which are 

observed by sensor systems, e.g. Twitter, OSM, Flickr or 

satellites.  

Considering the many potential sensors that the DENS can 

“listen” to, we need to identify those with the highest 

likelihood of containing information about the phenomenon 

that we are interested in (the right cues for combination). 

Thus, we need to have prior knowledge about the 

phenomenon and codify it in rules. For example, the utility of 

some sensor systems depend on the time of the day (just as 

human sensor systems do), e.g. whether it is day or night. As a 

first step, a brokering [15] approach23  can help to integrate 

the sensor data on the technical and syntactic interoperability 

level. The next level would be semantic integration or 

                                                                 
23 http://www.essi-lab.eu/do/view/GIaxe/WebHome 

Figure 2: Extended DENS-MSI. 

 
Source: The authors 

 



AGILE 2014 – Castellón, June 3-6, 2014 

 

interoperability through ontologies, metadata, and 

vocabularies [17]. 

Yet, it remains questionable whether it is feasible to 

semantically enrich sensor data on a low (atomic) level [10], 

because of the number of potential sensors readings that need 

processing and the exponential growth of links that might not 

in fact be sensible. It seems more appropriate to do the linking 

and semantic enrichment on the higher level of perceptions. 

On the level of individual stimuli, it seems more reasonable to 

check (i) whether the source is trusted (or neutral); and (ii) 

which (if any) detectable keywords are included, instead of 

analyzing the content and context in detail. The resulting 

sensor set can then be used for the actual MSI. 

The three major principles from neuroscience and cognitive 

science (spatial and temporal proximity, inverse effectiveness) 

show a clear alignment with the core principles of processing 

spatio-temporal data: what is near in space and time is related. 

This strengthens the analogy between human and digital earth 

nervous system. If multiple sensory inputs are available, then 

a DENS-MSI can rely on cue combination, i.e. a comparison 

of the various sensor inputs. In the optimal case, these can be 

unified in single coherent perception (e.g. remote sensing 

shows smoke plume over forests, Tweets talk about fire). 

However, if the cues are dissonant (e.g. Tweets show talk 

about forest fire in location X, but a visual live stream from a 

web cam showing nothing extraordinary or no smoke), causal 

inference provides an alternative. Causal inference is a crucial 

component in human perception and uses prior knowledge to 

resolve the conflicting sensor inputs by resorting to causal 

structures. It determines the most plausible causal structure to 

explain the dissonance. In the example above, possible causal 

structures are a sensor misreading (interpretation of Tweets), 

or temporal misalignment (remote sensing images do not 

match the exact same period). Here we tap into cognitive 

processes, especially long-term memory retrieval, in order to 

determine the most likely causal structure. For the MSI, the 

system would have to be able to assign likelihoods based on 

prior knowledge codified as machine-readable information. 

This is analogous to the GeoCONAVI use of authoritative 

datasets [16]. Given the large number of data sets available, 

we need to identify those that are the most relevant for the 

task or phenomenon. This corresponds to geographic 

information retrieval, with the important question: which data 

sets (i.e. knowledge) to choose? Ivanova [12] explores a 

solution based on domain expert input.  

The research from sensor data fusion has only recently 

begun to investigate the particular issues found with 

integration disparate sensors and hard/soft data, i.e. geospatial 

sensor networks from humans, low-cost in-situ sensors, and 

remote sensing. However, in addition to the Bayesian 

probabilistics discussed above, possibilistic and human 

centered approaches are investigated. While the former offers 

potential solutions that need further exploration, the latter one 

relates to crowd-sourcing tasks (see below). 

Continuing our thought experiment, the integrated sensory 

information results in perceptions of events on the Earth, e.g. 

forest fires. We can expect many such perceptions. These and 

the corresponding stimuli are stored in a short-term memory 

for immediate reference. This short-term memory is 

constantly analyzed (searched for patterns) and monitored. 

Only when a number of criteria (rules) are fulfilled is an alert 

being raised (e.g. several perceptions relating to forest fires in 

close spatial and temporal proximity). Similarly to the MSI, 

this filtering can be supervised by crowd-sourcing efforts.  

As a last step, verified sensor information can be stored in a 

long-term memory to be accessed for future multi-sensory 

integration, or other geographic information retrieval tasks. 

The short-term memory and long-term memory together form 

a ‘Digital Earth Memory System’.  

Clearly, a challenge is to train such a semi-autonomous 

system to filter and sort stimuli, query existing data sets for 

validation, integrate heterogeneous sensor data and monitor 

perceptions that are stored. Supervised machine learning 

would need constant human supervision, but this is actually a 

process that can be very well crowd-sourced. A constant 

stream of a stratified sample of the DENS perceptions could 

be used for this purpose. The stimuli that are part of these 

perceptions are checked by volunteers and micro-tasked paid 

crowd-workers. Hung [11] shows the feasibility of methods to 

filter out spammers and low-quality contributions. For 

example, they could check whether a Tweet that supposedly 

belongs to a perception “forest fire near Avignon, France” is 

actually about a forest fire in France). Gamification offers 

even more opportunities, e.g.15.  

 

5 Conclusions and outlook 

This paper aimed to stimulate the debate on interoperability 

for geospatial observations, to increase understanding of the 

various interactions between geospatial data collection, 

transformation, processing and usage on a global scale, and to 

show potential future research foci.  

Indeed, the paper has highlighted developments in and 

important challenges for improving interoperability of 

heterogeneous geospatial data sources. We have argued that 

the concept of the DENS can help and improve mutual 

understanding between practitioners, researchers, developers 

and citizens. Further, the paper has shown how knowledge 

from the disciplines of cognitive and neurosciences, as well as 

engineering can contribute to an improved DENS model.  

Particularly promising research objectives include the 

assessment of a sensor’s observations’ validity through 

possibilistic methods and the use of crowd-sourcing to 

supervise machine learning of algorithms and rules to filter, 

sort and organized stimuli into coherent perceptions. 

Arguably, too specific approaches had little success in 

increasing interoperability until now, while there is some risk 

of failure for over-generic approaches. Therefore, we suggest 

following a stepwise and incremental development 

methodology. We plan to use well examined cases, such as 

the forest fire [16, 18, 20] or flood [19] examples for the 

initial set-up of a possible solution, before moving into new 

areas. Here, we will address urban environments, which 

should provide a solid ground for, especially because of the 

related high traffic in social media.  
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