
1 Introduction 

The problem of drinking water is relevant for many regions, 

including Ukraine. Quality of drinking water, determined by 

its chemical and biological content, depends on several 

factors, including the presence of radioactive elements such as 

uranium. Uranium concentration higher than 0.08 Mg/L is 

potentially dangerous to human health. Major environmental 

and natural indicators affecting concentration of uranium in 

surface waters can be grouped into four categories: geological 

structure and geomorphology, geochemical, climate, and 

mineralogical [1]. The goal of this study is to explore various 

geostatistical methods to model spatial dependences between 

several environmental variables and distribution of uranium in 

surface waters. The study is focused on comparative analysis 

of several techniques to identify the most robust method to 

describe spatial distribution of uranium in surface waters 

Ukraine. The analysis was implemented using tools available 

in SPSS and ArcGIS packages. 

 

2 Methodology 

The study is based on the results of geological surveys in 

Ukraine carried out by State Enterprise "Kirovgeologiya" [2, 

3]. The database consists of 23 environmental indicators 

collected in 9353 sample points in Ukraine and neighbouring 

territories of Russia, Belarus, and Moldova. Not all 

environmental indicators are available for all neighbouring 

territories, limiting the study by using the complete dataset 

only available for Ukraine (6546 sample points, Table 1). 

The following workflow was exploited to describe the 

impact of several environmental variables on spatial 

distribution of uranium. Note on terminology: the term 

‘natural variables’, or ‘environmental indicators’, is widely 

used in this study to describe various natural and 

environmental factors, for example, mineralization, 

precipitation, relief, and many others. Some models use 

‘predictors’ with the same meaning as ‘variables’. 

1. Exploratory spatial data analysis (ESDA) is used for 

initial data analysis, such as check for statistical distribution, 

linearity, multicollinearity, and presence (or absence) of a 

pattern (both in spatial and non-spatial domains). Based on 

initial hypotheses and results of ESDA, further statistical data 

exploration was developed by building correlation, regression, 

and factor models.  

The histogram of uranium concentration clearly shows that 

statistical distribution of the source data does not meet criteria 

for normality. However, logarithmic transformation brings the 

dataset closer to the normal. 

The curve estimation procedure shows that the relationship 

between uranium and mineralization of water is more 

exponential than linear, which would require nonlinear 

regression modelling. However, implementation of multiple 

nonlinear regression for these variables can be problematic. 

Spatial autocorrelation methods were used to identify 

patterns in spatial measurements of uranium concentration. 

According to Moran’s I and Getis-Ord analysis [4], the 

distribution of uranium can be described as highly clustered 

with statistical significance. Moran's I index is 0.5475 (p-

value = 0.0) and Observed General G = 0.00007 (p-value = 

0.0). There is positive spatial autocorrelation as Moran’s I is 

positive and greater than expected IndexE(I) = -0.00015. 

Thus, spatial patterns in observations of uranium should be 

taken into account in correlation, regression, and factors 

models to avoid bias due to over-counting [5]. 

2.  In the second step, quantitative measure of global 

correlation is used to confirm or reject several hypotheses of 

relationship between the dependent variable (uranium) and 

independent variables. The analysis should identify natural 

variables which define high concentration of uranium, taking 

into account multicollineaity of the data. 

The classical global Pearson correlation coefficient r is used 

as a measure of global correlation. The coefficient is defined 

as 
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1 (1), where r is the correlation 

coefficient; iu  and iv are the individual observations; u and 

v  are the means of the two variables; n is the sample size; 

and Su and Sv are the standard deviations of the two variables. 

3. In the next step, factor analysis is used to identify a 

smaller number of natural variables that define most of the 
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variance of uranium distribution. This study utilizes factor 

analysis based on the principal components using Varimax 

rotation with Kaiser normalization [6].  

In the factor analysis model based on factor p is 
2/1

ppp  (2), where p is the matrix of factor loadings 

based on factor p; p is the diagonal matrix of i that are 

the corresponding eigenvectors of R, where R is the 

correlation n×n matrix or eigenvectors of  , where 

nnij  ][  (3) is the covariance n×n matrix of natural 

variables; and Γ is the matrix of eigenvalues. Here, n 

represents the number of variables and p is the number of 

factors.  

After a varimax rotation, each original variable tends to be 

associated with one (or a small number) of components, and 

each component represents only a small number of variables. 

This simplifies interpretation of resultant factor and their 

associations with the variables. Varimax searches for a linear 

combination of the original factors such that the variance of 

the squared loadings is maximized, which amounts to 

maximizing [6].  

4. The most significant natural variables, identified 

from factor and global correlation analysis, were used to 

demonstrate spatial nonstationarity of correlation between 

uranium and natural variables. This was done by 

implementing local correlation analysis (or geographically 

weighted correlation, GWC). In this study, a local form of 

bilinear regression with the optimized bandwidth was used to 

model spatially varying relationships between uranium and 

natural variables. 

The geographically weighted local Pearson correlation 

coefficient ),( kki yxr  is used and defined as 
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where ),( kkii yxr is the correlation coefficient, ),( kk yx is 

the location of observation i; iu  and iv are the individual 

observations; u and v  are the means of the two variables, 

j  is the weight assigned to each observation that based on a 

distance decay function centered on the observation i; n is the 

sample size; and Su and Sv are the standard deviations of the 

two variables; ),(1 kk yx  is the estimated parameter for the 

bivariate local least-squares regression on observation i. 

5. Relationships between the dependent variable and 

all explanatory variables were modelled by using stepwise 

linear multivariate regression analysis (or ordinary least 

squares regression, OLSR). Then, several most significant 

explanatory variables identified from the stepwise 

multivariate regression analysis were used to build local linear 

multivariate regression models (or geographically weighted 

regression, GWR) with the optimized bandwidth [7]. 

Explanatory variables in spatial regression model have 

consistent relationship with the dependent variable both in 

geographic space and in data space. The requirements of 

linear multiple regression have to be addressed [8]. 

The OLS global regression formula applied to the 

explanatory independent variables xp to best predict the 

dependent variable y  and defined as 

  pp xxxy *...** 22110  (5), where y is the 

dependent variable, xp are the explanatory variables, p  are 

global regression coefficients, p is number of variables, and  
is random error or residual. 

A stepwise approach was used to build multivariate 

regression models. At each step, the independent variable not 

included in the equation had the smallest probability of F-

statistic, if that probability is sufficiently small. The method 

terminates when no more variables are eligible for inclusion 

or removal. The AIC and adjusted R2 are used to estimate the 

models’ performance. The method also insures that VIF 

among explanatory variables are low to avoid 

multicollinearity among explanatory variables. 

Explanatory variables in spatial regression model have 

consistent relationship with the dependent variable both in 

geographic space and in data space. The requirements of 

linear multiple regression have to be addressed [7]. There is a 

possibility to improve model results by applying local 

Geographically Weighted Regression (GWR), which takes 

into account effect of heteroskedasticity [7]. 

The geographically weighted local regression [7] defined as 

ipikkpikkikki vyxyxyxy   *),(...),(),( 0  (6) on 

observation i, where ),( kki yxy is the dependent variable 

estimated in location i; xp are the explanatory variables; 

),( kkp yx  are the local regression coefficients; p is the 

number of variables, and i  is the residual estimated in 

location i. Each local regression ),( kki yxy  equation is 

solved using a different weighting of the observations that 

based on a distance decay function cantered on the 

observation i. 

GWR accounts for spatial nonstationarity in parameter 

estimates, but it does not directly address autocorrelation [9].  

6. Finally, local factor analysis (or geographically 

weighted factor analysis, GWFA) with the optimized 

bandwidth [10], was proposed to generate linear multivariate 

regression models for the dependent variable (uranium) and 

six major factors produced in the global factor analysis.  

The geographically weighted local factor/regression 

models defined as 

ipikkpikkikki Fyxyxyxy   *),(...),(),( 0  (7) on 

observation i, where ),( kki yxy is the dependent variable 

estimated in location i; pF  are the factors from principal 

components extraction; ),( kkp yx  are the local regression 

coefficients; p is the number of variables, and i  is the 

residual estimated in location i. Each local regression 

),( kki yxy  equation is solved using a different weighting of 

the observations.  

 

3 Implemention 

3.1 Global and Local Spatial Correlation Analysis 

The most significant factors can be identified using global 

correlation of uranium with all indicators from the four 



defined groups: geological, geochemical, climatic, and 

mineralogical (See Global r in Table 1). 

The highest global correlation coefficients of uranium were 

obtained for humus (r=0.52), temperature (r=0.51), 

precipitation (r=-0.50), and volume of natural groundwater 

resources (r=-0.56). Uranium also has significant correlation 

with the overall water mineralization (r=0.49) and its 

components: SO4 (r=0.45), Cl (r=0.44), and hardness of water 

(r=0.49). These indicators are inter-dependent and highly 

correlated.  

Local correlations for different indicators can form complex 

spatial patterns and anomalies. For example, Moran’s I and 

Getis-Ord analyses indicate that the pattern of uranium is 

highly clustered. Thus, values of correlation coefficients 

inherit high nonstationarity and should be modelled by using 

local methods. For example, uranium and isopachs exhibit 

very low global correlation (only r=0.02), but coefficients of 

local correlation range from -0.71 up to 0.42 that shows very 

high associations between these two variables on the local 

level. 

 

3.2 Global Factor Analysis 

Factor analysis has been used to find the input of a particular 

variable into distribution of uranium. Analysis of 23 

environmental indicators revealed six principal components 

(Table 1).  

The analysis shows that all six identified principal 

components largely coincide with the four groups of natural 

variables, outlined in the hypothesis of distribution of uranium 

in Ukraine (Table 2). 

 

3.3 Local Spatial Correlation Using Principal 

Components 

Local correlation analysis has been carried out for the most 

significant elements from each component (highlighted in 

Table 1). Figures below provide examples of local spatial 

correlation using principal components: mineralization of 

water from component 1 (Figure 1), and temperature and 

relief from component 3 (Figure 2).  

Table 1: Global correlation and principal components of environmental indicators. 

 
Component 

Global r 1 2 3 4 5 6 

Explained variance 

(cumulative) % 

 30.2 44.2 54.1 62.3 68.0 72.5 

SO4 .448 0.952 0.139 -0.092 -0.045 0.1 0.091 

Mineralization of water .493 0.945 0.108 -0.159 -0.003 0.132 0.154 

Hardness of water  .493 0.937 0.035 -0.173 0.01 0.062 0.172 

Cl .445 0.918 0.07 -0.147 0.016 0.148 0.128 

NO3 .269 0.629 -0.177 0.198 0.368 0.354 -0.061 

Cu -.067 0.027 0.886 0.101 0.074 0.043 0.038 

Fe  -.148 0.012 0.851 0.286 -0.002 0.07 -0.01 

Mn  .118 0.392 0.716 0.008 -0.091 0.088 -0.004 

Zn  .007 -0.101 0.608 -0.417 0.103 -0.096 0.103 

Precipitation  -.497 -0.328 0.243 0.762 0.16 -0.156 -0.276 

Relief  -.244 -0.148 0.077 0.703 0.074 -0.014 -0.064 

Slope -.078 -0.011 -0.051 0.617 -0.139 0.235 0.091 

Temperature .507 0.434 -0.347 -0.521 -0.332 0.293 0.217 

NH4 -.117 -0.025 0.036 0.165 0.816 -0.162 -0.037 

NO2 .288 0.525 -0.009 -0.126 0.67 0.228 0.062 

PO4 .166 0.04 0.211 -0.327 0.627 0.331 0.199 

Cr -.390 -0.346 -0.228 0.25 0.589 -0.485 -0.215 

Isopach .023 0.13 0.083 0.287 0.071 0.704 -0.146 

Humus .521 0.372 0.058 -0.075 -0.021 0.648 0.306 

Volume of natural 

groundwater resources 

-.558 -0.431 0.26 0.384 0.264 -0.507 -0.29 

HCO3 .160 0.129 -0.017 0.077 0.038 -0.23 0.784 

F .353 0.207 0.048 -0.228 -0.039 0.128 0.546 

As .229 0.032 0.052 -0.044 0.023 0.298 0.473 

 

Figure 1: Uranium (left), water mineralization (center), and distribution of local correlation (right). Global correlation r=0.49. 

 



Overall, the correlation analysis highlights significant global 

association between uranium and water mineralization with 

strong local correlation in certain areas in Ukraine. Strong 

relationship is defined mostly by climate parameters, 

geological formation, and distribution of large river basins. 

Among the natural variables, precipitation and temperature 

play important roles, but they are highly inter-correlated. 

Temperature shows the highest global correlation coefficient 

(r=0.51) with the highest values in local correlation (r=-

0.40…0.60). 

Geomorphological factors have low global correlation 

coefficients, but could be well used to predict the 

phenomenon at the local level. The local correlation 

coefficients range from -0.47 to 0.71 for relief (Figure 2), and 

from -0.71 to 0.42 for isopachs (thickness of sedimentary 

rocks).  

 

3.4 Local Spatial Multiple Regression 

Contribution of each factor in distribution of uranium can be 

better understood by carrying out multiple regression analysis. 

Eighteen multiple regression models were built incrementally 

using predictors outlined in Table 3. The first five most 

significant predictors (precipitation, humus, water hardness, F, 

and Fe) contribute 40.2% into the overall model. Local r-

square coefficients for multiple regression model, built only 

on precipitation variable, are shown in Figure 3, left. Adding 

the humus component and then hardness of water improves 

the model. 

Figure 2: Uranium (left), relief (centre), and their correlation (right). Global correlation r=-0.24. 

 

 

Table 2: Environmental indicators (predictors), selected for multiple regression analysis. 

Component Natural Variables Group Predictors 

1 Mineralization and hardness of water Mineralogical 
Hardness of water, 

mineralization of water 

2 Metals dissolved in water  Geochemical  Cu, Fe, Cl, Zn  

3 
Climatic conditions of territory and formation 

of ground water  
Climatic  

Precipitation, temperature, 

humus 

4 Organic compounds in water Mineralogical  NO3, NH4, PO4 

5 Geomorphological characteristics 
Geological structure and 

geomorphology 
Relief, isopach 

6 
Mineral compounds and satellite elements of 

uranium 
Geochemical Bicarbonate, fluoride, arsenic 

 

Table 3: Multiple regression model summary. 

Model Predictors R R Square Adjusted R Square Std. Error of the Estimate 

1 precipitation  0.51 0.26 0.26 1.1611 

2 1 + humus  0.595 0.354 0.354 1.0849 

3 2 + water hardness 0.623 0.388 0.387 1.0564 

4 3 + F  0.629 0.396 0.395 1.0496 

5 4 + Fe  0.634 0.402 0.402 1.0438 

6 5 + As  0.637 0.405 0.405 1.0414 

7 6 + SO4  0.638 0.407 0.407 1.0395 

8 7 − water hardness  0.638 0.407 0.407 1.0396 

9 8 + isopach  0.641 0.411 0.41 1.0368 

10 9 + NH4  0.642 0.413 0.412 1.0351 

11 10 + Cl 0.644 0.415 0.414 1.0332 

12 11 + temperature  0.645 0.416 0.415 1.0325 

13 12 + NO3  0.645 0.417 0.416 1.0317 

14 13 + HCO3 0.646 0.418 0.416 1.0310 

15 14 + Zn  0.647 0.418 0.417 1.0305 

16 15 + Cu 0.647 0.419 0.418 1.0300 

17 16 + PO4 0.648 0.419 0.418 1.0296 

18 17 + mineralization 0.648 0.42 0.419 1.0288 

 



Ftor (F), iron (Fe), and arsenium (As) add only 1.7% in 

variability of the data. None of the rest of environmental 

variables contributes more than 0.2% into the final model. 

 

3.5 Multiple Regressions Based on Principal 

Components 

An alternative approach for multiple regression is to build the 

models using principal components. All variables constituting 

the first group of principle components are used to create the 

first multiple regression model. The model is further improved 

by incrementally adding elements from all other groups 

(Figure 4 and Figure 5). 

Comparison of two multiple regression models based on the 

six principal components and the six individual environmental 

indicators shows that in general, both models indicate similar 

associations with the distribution of uranium in ground 

waters. However, the maximum coefficient of local 

correlation for the model, based on the principal components, 

is only 0.48, while the same correlation for the latter model is 

0.51. This indicates that the zones of high regression are 

identified objectively, and the model of the five environmental 

variables shows stronger local associations comparing to the 

component model which takes into account all studied 

indicators. 

 

4 Conclusion 

The paper demonstrates the use of a combination of 

different modelling techniques for better understanding of 

large-scale distributions of environmental indicators (such as 

uranium) by exploring spatial associations and patterns of 

associated natural variables and predictors. Spatial statistical 

modelling and local multiple regression can be successfully 

used for prediction of uranium concentration in surface waters 

Figure 3: Local R2-square coefficients for geographically weighted regression models: precipitation (left), precipitation + 

humus (centre), precipitation + humus + water hardness (right). 

 
 

Figure 4: Uranium (top), and six local principal components. 

 

 
 



in different scenarios for changing climatic conditions in 

different parts of the territory of Ukraine. One intriguing 

association discovered from the modelling is the relationship 

between uranium and climatic variables. Concentration of 

uranium has strong local correlation with precipitation, 

temperature, and humus. Precipitation and humus are the first 

two variables in the regression models for uranium. At the 

same time, precipitation has very high correlation with 

temperature (r=-0.825). Variation in temperature and 

precipitation due to the global climate change can alter their 

contribution in the uranium content. Those scenarios can be 

explored using the proposed spatial regression models.  

The study confirms that the methods presented (global vs. 

local for regression and factor analysis) do not always provide 

overly objective ground for making conclusive inferences. 

Outcomes of different models sometimes do not support each 

other, e.g., some explanatory variables have low correlation 

with the dependent variable but at the same time have high 

percentage of explained variance in factor analysis. Global 

spatial regression modelling in a large-scale spatial analysis 

can be unsuitable for the local inference. The modelling 

results including their cartographic representations remain 

mainly descriptive and require interpretation by application 

experts. 

Further research is envisioned in refining relationships 

between the environmental indicators and improving 

numerical forecasts by expanding the range of applied spatial 

statistical methods. The study is planned on exploring 

econometric models and spatial-clustering techniques to 

improve the robustness of the developed statistical model. 
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Figure 5: Building consecutive multiple regression models using principal components. 

 
 


