
1 Introduction 

In the last decade, Object Based Image Analysis (OBIA) has 

been accepted as an effective method for classifying high 

resolution datasets [1]. This image analysis method is an 

iterative approach that starts with the partition of the image 

into homogeneous units according to some pre-defined 

homogeneity criteria [1]. Created image objects become the 

analysis units for the subsequent image classification [2]. So 

far, the OBIA method is „fully controlled by the experts‟ [3]. 

Therefore, the classification accuracy and the time spent on 

the image analysis task depend to a higher degree on the 

expert knowledge and experience about the spectral behaviour 

of real world objects, the interrelations between them and the 

embedding context. This constraint impedes the usefulness of 

OBIA in operational frameworks where “the speed and 

flexibility with which information is produced is an important 

factor” [4]. To solve this problem, we need to specify the a 

priori knowledge used to extract information from satellite 

imageries into consistent models and to make these models 

intrinsic to the image analysis systems. 

The present work is an on-going research dedicated to the 

development of a methodological framework for ontology-

driven object recognition from optical remote sensing data. In 

this paper, we focus on the challenges associated with the 

ontology development, the so-called grounding of ontologies 

problem [5]. According to [5], „the claims of any domain 

theory need to be based on some observations in that domain‟. 

We „ground‟ our ontology on the visual interpretation keys 

(VIK) usually used in the aerial photographs interpretation 

task as guidelines for the delineation of feature of interest. 

This is a plausible approach as the „spatial resolution gap 

between VHR data and aerial photographs has decreased‟ [6]. 

The ontology models the semantics of the VIKs and matches 

this information with application domain knowledge that 

triggers the image interpretation task (image analysis goal). 

The following issues will be discussed in this paper: (1) 

ontology and satellite imagery interpretation in the OBIA 

context; (2) developing ontologies for imageries interpretation 

using expert knowledge modelled in the form of VIKs; (4) 

validation of the VIKs-based classification. 

 

 

2 Ontology and image interpretation in the 

OBIA context 

The ontology is defined as “formal, explicit specification of 

a shared conceptualization” [7]. It captures the semantics of 

the domain concepts into knowledge organization systems that 

can be easily reused and extended. In remote sensing, the 

ontology is seen as a solution to reduce the semantic gap 

between digital information (Digital Numbers -DN) measured 

in the satellite imageries and the knowledge used to give 

meaning to the low level image information [8]. Ontology-

driven image interpretation makes sense especially in the 

OBIA context where the image objects together with their 

spectral characteristics, morphological properties (shape, size 

etc.) and the spatial context become the units of analysis in the 

image interpretation procedure. By contrast, the pixel-wise 

approach uses the pixel spectral reflectance as the building 

blocks of image classification. Few research works focused on 
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Abstract 

Object-based image analysis (OBIA) approach is an accepted and efficient method for classifying very high resolution (VHR) datasets. 

The classification process relies on the knowledge and experience of the expert conducting the classification. Therefore, the classification 

task is an error-prone and time-consuming process. To overcome this issue, this paper suggests a framework for ontology-based 
classification of image objects in VHR imageries. In particular, the paper focuses on the challenges associated with the ontology 

development, the so-called ontology-grounding problem. We test the feasibility of visual interpretation keys (VIKs) to extract information 

from VHR data. The ontology models the VIKs used to extract information from VHR imageries and match this information with 
application domain knowledge that triggers the image interpretation task. The benefit of this approach lies in the explicit specification of the 

knowledge used to extract information from satellite imageries. 

Keywords: ontology, satellite imagery, OBIA, visual interpretation keys. 



AGILE 2013 – Leuven, May 14-17, 2013 

 

the ontology as solution to enhance the image interpretation 

[9-11]. These approaches offer solutions for matching image 

objects against the concepts whose semantics are modelled in 

the ontology. To generate the Knowledge Base (KB) used for 

the scope of classification, the authors are applying mainly 

machine learning techniques. Therefore, the resulting KB is 

tailored to a specific area, the robustness of the resulting 

classification being reduced. In our research, we are interested 

in increasing the transferability of the image classification. 

 

 

3 Methodology 

3.1 General framework for implementing 

ontology-based recognition of objects from 

remote sensing imageries 

This work is part of a general ontology-based framework used 

to classify objects extracted from satellite imagery. The 

framework builds upon semantic web technologies and OBIA 

methods. OBIA is used to partition the image into discrete 

objects and to compute the image object attributes (called in 

this paper features) which are relevant for the classification 

purpose.  

At the core of our methodology there is an ontology-based 

reasoning layer serving as mechanism for matching features 

of image objects against the application domain concepts. The 

image objects delineated applying available segmentation 

algorithms are exported in the GeoJSON format and used as 

input dataset for the subsequent classification. The a priori 

knowledge is explicitly modelled in the ontology using Web 

Ontology Language2 (OWL). The system itself has been 

developed in Java and consists of several modules including a 

reasoning system (Pellet API), GeoJSON, OWL API 

(http://owlapi.sourceforge.net/), WordNet API 

(http://lyle.smu.edu/~tspell/jaws/index.html) and KML API. 

In this paper we focus on ontology grounding problem.  

 

 

3.2 Developing ontologies for image 

interpretation 

Image analysis and interpretation require the following 

knowledge [12]: (1) application domain knowledge; (2) image 

analysis knowledge. Therefore, an ontology-based image 

interpretation framework needs to account for these two 

knowledge bases (Figure 1). Domain knowledge refers to the 

domain terminology whose underlying semantics are 

modelled in the domain ontology. The knowledge used for 

image interpretation is divided into qualitative knowledge and 

quantitative information. Qualitative knowledge refers to the 

spectral and spatial behaviour of objects of interest in the 

VHR imageries described by natural language terms 

(qualitative information): e.g. vegetation has a high 

Normalized Vegetation Index (NDVI); rivers are elongated. 

This qualitative knowledge is linked to image information 

(image object features computed using available algorithms). 

A critical step in the ontology engineering process is the 

development of a KB that reflects the domain semantics at a 

specific granularity (level of details). This problem is known 

as the ontology grounding problem [5]. In our work, 

application domain vocabulary was derived from the UN 

Land Cover Classification System (LCCS) [13], while the 

image features used to assign the image objects to the 

corresponding class are elicited from existing VIKs. We aim 

at developing a generic image analysis model that can be 

reused in similar image analysis contexts. Therefore, the 

classification robustness is an important criterion for defining 

real world classes to be identified in the image. 

 

A) Application domain knowledge 

 

Application knowledge can be gathered from existing 

classifications, different text corpus or by interviewing the 

experts. In this particular case, we extended the UN LCCS 

with the following classes identifiable in the VHR data: (1) 

buildings; (2) Roads/ParkingLots; (3) water bodies; (4) 

playgrounds; (5) shadows; (6) vegetation. The shadow class 

was introduced to avoid the confusion between shaded objects 

and other classes with similar spectral reflectance, i.e. water 

or dark-roofed buildings. 

 

B) Image Interpretation knowledge 

 

In OBIA, the objects of interest are classified based on the 

expert knowledge and experience about spatial and spectral 

behaviour of real objects in the VHR data [14]. The challenge 

is to find the relevant features to define the classes. To 

achieve this, we employed VIKs designed to interpret aerial 

photographs as reference knowledge to identify objects of 

interest in the imagery (Table1). 

 

Figure 1: Excerpt of developed ontology. Domain Knowledge 

conveys the domain nomenclature and underlying semantics, 

whereas Qualitative Knowledge and Quantitative information 

accounts for the image analysis knowledge (image objects 

appearance in the image)  

 
 

The idea of VIKs for VHR interpretation is not a novel 

approach [6] and [15]. However, to our knowledge, none of 

Domain Knowledge 

Quantitative 

Information 

Qualitative Knowledge 
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the existing ontology based image interpretations applied this 

solution to overcome the problem of the ontology-grounding 

problem. 

 

 

3.3 Knowledge formalisation  

The formalization of land cover classes semantics relies on the 

last advances of semantic web technologies. So far, there is a 

plethora of knowledge modelling languages relying on 

different modelling formalisms. In this work, we are using 

Ontology Web Language2 (OWL2) specifications. This 

language is a World Wide Web Consortium (W3C) 

recommendation.  

 

Table 1: Excerpt of the interpretation keys used to describe 

individual classes to be extracted from satellite imageries 

(Source [12], sample and image descriptors added by authors) 

Class Sample Colour, Shape, 

Size 

Image 

Descriptor 

 
Vegetation 

 

Green, different 
shape 

NDVI 
 

  

Tiling 
Roof 

 

Dark brown, 
Rectangular shape 

Red/Green 
Ratio 

Density; Area  

 

Light 
concrete 

roof 

 

White, Rectangular 
shape, variable size 

Brightness 
Density; Area  

 

Asphalt 

street 

 

Dark grey, 

Elongated shape 

narrow 

Elongation 

 

Playground 

 

Orange 

rectangular shape  

 Red/Green 

Area 

 

 

The OWL2 semantics allow us to express restrictions to a 

range of data values, to model low-level image information 

and to link it with the application domain concepts in the 

ontology. 

 

 

3.4 Classification testing and first results 

We test the feasibility of the selected VIKs through a use case 

scenario dedicated to the extraction of buildings, 

Roads/ParkingLots, playground, water bodies and vegetation 

from WorldView2 (WV) imagery. The study area is located in 

Salzburg city, Austria (2071*1917 extent). WV is the first 

high-resolution eight-band, multispectral commercial satellite 

collecting multispectral imagery at 1.8-meter resolution and 

panchromatic imagery at 0.46 meters (Digital Globe, Inc. - 

http://www.digitalglobe.com). The WV imagery was 

segmented into homogeneous image objects using multi-

resolution segmentation algorithm [16] implemented in 

eCognition software package (http://www.ecognition.com/). 

We visually examined the quality of the segmentation outputs 

and refined them by using spectral difference segmentation 

algorithm. The non-vegetated areas were masked out using 

NDVI index, whereas water body class is identified using 

Normalized Difference Water Index (NDWI) (equation 1): 

 

 
 

The remaining classes are classified using the class 

descriptors displayed in Table 1. The morphological 

characteristics (shape, size etc.) play an important role in class 

definitions especially when dealing with complex urban 

environments [17]. The following shape metrics were used: 

area, density feature defined in eCognition software package 

as the number of object pixels divided by its approximated 

radius and the elongation feature.  

 

Figure 2: Classification results of the study area (subset of 

Salzburg city, Austria) yielded by translating the VIKs into 

classification rulesets. 

 
 

 

The classification results (Figure 2) were assessed using a 

standard confusion matrix [18]. The reference samples were 

created through the visual interpretation of the stratified 

samples using Bing Map Aerial (©2012 Nokia, © 2013 

Microsoft Corporation). The generated confusion matrix 

(Table 2) assess the thematic accuracy of the finer concepts 

classified based on the image descriptors depicted in Table 1. 

The classification achieved an overall accuracy of 82% and a 

kappa index of 0,77.  

http://www.digitalglobe.com/
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4 Discussion and conclusions 

In this paper, we described the ontology grounding phase 

involved in the process of ontology-based recognition of 

objects from satellite imageries. To select the relevant features 

for the class definitions, we used VIKs whose feasibility was 

tested through a use-case scenario presented in section 3.4.  

Since our goal was to develop reusable image analysis 

workflow, developed classification relied on spectral ratios, 

indexes and shape metrics. The image regions classification 

by means of indexes is independent of image distortions 

leading to DN values inconsistencies within the class. The 

shape metrics proved to be useful to classify classes with 

similar spectral reflectance: concrete streets vs. concrete roof.  

The shape descriptions assume complete and contiguous 

objects [17] and therefore, their efficiency for the image 

object classification depends on the quality of the 

segmentation results. The use-case scenario showed that 

applied segmentation algorithms do not create always 

meaningful image objects that fit the asserted concept 

definition and thus challenges the development of automatic 

object recognition systems that requires: „consistent pixel 

intensity, predictable shape and well-defined edges’ [19]. For 

example, the streets occluded by shadows were 

oversegmented (split into many segments) and the generated 

image objects were misclassified as buildings. Thus, the 

„Roads and ParkingLots‟ class achieved the lowest user 

accuracy‟s: 74,5% (Table 2). The class „Buildings‟ yielded the 

lowest producer‟s accuracy (73,7%) because of the overlap 

with the „Roads and ParkingLots‟ and „Shadow‟ class. The 

confusion with „Shadow‟ can be however solved by assigning 

the shadow class to the „Buildings‟ class using neighbourhood 

relations.  

We concluded that the robustness and accuracy of the 

proposed methodology depends on the quality of the image 

segmentation which remains an open problem within OBIA 

[3]. To improve the segmentation results, ancillary data can be 

used (e.g. LiDAR data). 

Despite the above presented limitations, the proposed 

framework may contribute to the development of operational 

image analysis frameworks where “precision can be traded 

for robustness and computational efficiency” [8].  

The image processing knowledge is modelled in the 

ontology using the OWL2 specifications. OWL2 allows us to 

run reasoning on top of developed ontologies. Thus, implicit 

knowledge can be inferred based on the explicit knowledge 

conveyed in the ontology. The explicit specification of the 

underlying meaning of information extracted from VHR data 

extends the advantages of OBIA regarding the automatic 

integration of information extracted from satellite imagery 

with GIS data. Moreover, the ontology-based recognition of 

objects from satellite imageries is an important step towards 

overcoming the semantic heterogeneity problems. The 

achievement of semantic interoperability fits the requirements 

of the existing Spatial Data Infrastructure (SDI) initiatives 

such Global Monitoring for Environment and Security 

(GMES) and Global Earth Observation System of Systems 

(GEOSS). 
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