
1 Introduction 

In Australia, water shortage is a severe issue in many areas, 

particularly in the agricultural sector which is responsible for 

65% of the total water usage. Much of the environmental 

degradation including salinisation is associated with the 

changes in the near-surface water balance induced by massive 

clearing of native vegetation and deforestation. These 

artificial changes have led to significant increases in 

groundwater re-charge, which in turn have led to rising water 

tables and salinisation. Other important aspect of the 

hydrological system is vegetation. Vegetation influences the 

hydrological cycle through the exchange of energy, water, 

carbon and other substances and is therefore critical for many 

hydrological processes, in particular transpiration, infiltration 

and runoff. The movement of water through the hydrological 

cycle varies significantly in both time and space. Australia, 

the driest continent, has the highest variability in rainfall and 

runoff and is therefore a difficult system to model [12, 13].  

This presents a serious problem for sustainable agricultural 

development in the region because there is no reliable surface 

water for irrigation. So, the Australian farmers are always 

facing the big question about how much water they could buy 

and use for their potential future irrigation and crop growth. 

Water usage for irrigation and associated electricity costs are 

extremely high in Australia. Efficient and timely decision 

support regarding the sustainable management of water usage 

is essential. One way to overcome the problem is to combine 

field experiments with the conventional water balance 

modelling. But field experiments are expensive and only a 

limited number of land-use options could be trialled. So 

generalisation of the water balance estimation is near 

impossible just depending only on field experiments. 

Even though regular weather data is available to the farmers 

but ultimately still farmers use their experience to make the 

water management decision as it’s extremely hard to interpret 

multivariate data. There is genuine need for multi source 

sensor and model data and knowledge integration to tackle 

this problem and to provide better decision support for the 

farmers based on strong scientific foundation rather than 

intuition. So there is a genuine need for multi-source sensor 

and model data and knowledge integration to tackle this 

problem. 

In this paper novel knowledge integration and machine 

learning analysis based water usage recommendation system 

has been investigated and proposed. The proposed 

recommendation framework is called i-EKbase. This 

framework has the capabilities of on demand complementary 

knowledge integration from multiple data sources and 

automatic interpretation of the knowledge. In this paper i-

EKbase has been applied for recommending and providing 

decision support regarding the sustainable management of 

water usage in Australian irrigation sector [2, 14, 15]. 

 

2 Science Challenge 

Main focus of this paper was to develop an integrated multi 

source environmental knowledge framework to provide large 

scale availability of relevant sensor-model database to 

investigate unsupervised machine learning based data driven 

approach for hydrological application.  

Second aspect of this paper was to use the integrated 

knowledge to calculate a water balance indicator using the 
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conventional water balance equation over two years period. 

Idea behind this exercise was to develop a historic relationship 

matrix among the available environmental attributes and 

desired water balance estimation. 

Third aspect of this research study was to apply machine 

learning based supervised algorithms on the historic 

relationship matrix data to develop a water usage 

recommendation and decision support system. Trained 

algorithm would then be used to provide water usage 

recommendation from the newly available environmental 

attributes. 

 

3 i-EKbase Development 

Five different environmental data sources were considered for 

the development of i-EKbase, namely, SILO [8], AWAP [6], 

CosmOz [7], ASRIS [5], and MODIS [9] (see Figure 1). Long 

Paddock SILO database is operated by the Queensland 

Climate Change Centre of Excellence (QCCCE) within the 

Department of Science, Information Technology, Innovation 

and the Arts (DSITIA). Australian Water Availability Project 

(AWAP) database is developed to monitor the state and trend 

of the terrestrial water balance of the Australian continent, 

using model-data fusion methods to combine both 

measurements and modelling. The Australian Soil Resource 

Information System (ASRIS) database provides online access 

to the best publicly available information on soil and land 

resources in a consistent format across Australia. The 

Australian Cosmic Ray Sensor Network (CosmOz) database 

is a near-real time soil moisture measurement network 

providing neutron counts related to bulk soil moisture. 

MODIS (MODerate resolution Imaging Spectroradiometer) 

database which includes data from Terra and Aqua satellites - 

viewing the entire Earth's surface every 1 to 2 days, acquiring 

data in 36 spectral bands, or groups is available via NASA 

website. Individual web data adaptors were created to access 

and download data and integrate automatically based on 

semantic metadata matching mechanism. i-EKbase has been 

developed as an automatically adaptable dynamic 

knowledgebase. 

 

3.1 Knowledge Integration 

Based on any given location information (latitude and 

longitude) nearest available Bureau of Meteorology (BOM) 

weather station was selected based on geographical distance. 

SILO data file was downloaded and processed for that station. 

Nearest available CosmOz Data was also downloaded for the 

selected station.  AWAP database was connected through a 

secured FTP server and grid files were downloaded locally. 

ASRIS database was downloaded from publicly available 

ASRIS website. For the same location a pixel position was 

derived on the daily continental AWAP gridded data and time 

series were extracted for individual variable for a given time 

frame. Similarly a pixel position was also calculated from The 

Australian Soil Resource Information System (ASRIS) data to 

extract soil resource information for the same latitude and 

longitude. MODIS images were downloaded and processed 

for that same location to extract time series data [9, 11]. 

 

3.2 Rain MODIS Data Processing 

Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite 

based precipitation products were constructed from the post 

real-time TRMM Multi-Satellite Precipitation Analysis 

(TMPA) product, 3B42 [9]. The purpose of the 3B42 

algorithm is to produce TRMM-adjusted merged-infrared (IR) 

precipitation and root-mean-square (RMS) precipitation-error 

estimates. The algorithm consists of two separate steps. The 

first step uses the TRMM VIRS and TMI orbit data (TRMM 

products 1B01 and 2A12) and the monthly TMI/TRMM 

Combined Instrument (TCI) calibration parameters (from 

TRMM product 3B31) to produce monthly IR calibration 

parameters [4]. The second step uses these derived monthly 

IR calibration parameters to adjust the merged-IR 

precipitation data. These gridded estimates are on a 3-hour 

temporal resolution and a 0.25-degree by 0.25-degree spatial 

resolution which provided the adjusted merged-IR 

precipitation (mm/hr) and RMS precipitation-error estimates. 

 

3.3 RDF Model Integrations 

A unified knowledge integration and representation model 

was developed using the unified Resource Description 

Framework (RDF) model for i-EKbase. Unified knowledge 

RDFs were created for all the data sources based on pre-

processed data, available meta data, and original provenance 

information. All RDFs were integrated in the next stage. Main 

purpose of this RDF based approach was to store the i-EKbase 

on a triplestore framework. A triplestore is a framework used 

for storing and querying RDF data. It provides a mechanism 

for persistent storage and access of RDF graphs. Recently, 

there has been a major development initiative in query 

processing, access protocols and triple-store technologies. i-

EKbase was developed using a triple called “Sesame 

triplestore”. Sesame is an open source framework for storage 

inference and querying of RDF data [10]. 

 

3.4 Experimental Data 

Data for two different locations namely Daly River {131.4, -

14.2}, and Tullochgorum {147.9, -41.7} were integrated and 

processed using i-EKbase for this study. These locations were 

selected to induce significant data variance in the 

generalization experiments as geographically they are quite 

different in nature. Daly River was a tropical savannah, 

whereas Tullochgorum was an improved pasture land. 

Environmental variables which were acquired and integrated 

for the time period 01/01/2011 – 31/12/2012 are listed in 

Figure 1. 

 

4 Water Balance Model 
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In hydrology, a water balance equation can be used to 

describe the flow of water in and out of a system (Figure 2). A 

system can be one of several hydrological domains, such as a 

column of soil or a drainage basin. Water balance can also 

refer to the ways in which an organism maintains water in dry 

or hot conditions. It is often discussed in reference to plants or 

arthropods, which have a variety of water retention 

mechanisms, including a lipid waxy coating that has limited 

permeability [11-14]. 

Water balance is based on the law of conservation of 

mass: any change in the water content of a given soil 

volume during a specified period must equal the 

difference between the amount of water added to the 

soil volume and the amount of water withdrawn from it. 
The root zone water balance is usually expressed as: 

 

                 (1) 

Where    is the change in root zone soil water storage over 

the time period of interest,   is precipitation,   is direct 

evaporation from the soil and water body surface,   is 

Figure 1: Environmental variables extracted, processed and integrated from SILO, CosmOz, AWAP, ASRIS and 

MODIS to develop i-EKbase. 

 
 

Figure 2: Hydrological cycle schematic to form the water balance equation. 
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transpiration by plants and grass,    is surface runoff or 

overland flow, and    is deep drainage out of the root zone. 

All attributes are expressed in terms of volume of water per 

unit land area or equivalent depth of water over the period 

considered. 

The recharge to the groundwater system can be calculated as: 

             (2) 
 

Where SSF is the lateral subsurface flow calculated 

according to Darcy’s law. When the control volume is the 

entire catchment represented by given latitude and longitude 

information, the surface water balance equation can be 

expressed as: 

 
                           (3) 

 

Where       is the change in spatially averaged 

catchment water storage,     is spatially averaged 

precipitation,      is the spatially averaged catchment 

evapotranspiration,     is the spatially averaged catchment 

surface runoff, and      is the spatially averaged catchment 

recharge. Equation 3 was used for i-EKbase based historic 

water balance calculation. 

 

4.1 Irrigation Water Requirement Indicator 
 

As described in the Figure 3, based on water balance equation 

and i-EKbase knowledge an irrigation water requirement 

indicator was calculated. This indicator was calculated for the 

whole duration of this research experiment. Historically there 

were only two possible water management decisions that one 

farmer could take on a day - either they did required to buy 

extra water for crop irrigation or there was enough water in 

soil that they did not required to buy extra water. Positive 

results from i-EKbase based water balance calculation 

indicated enough water in the soil (represented by Class 1 or 

‘1’ values) where as negative results indicated the necessity of 

buying water (represented by Class 2 or ‘2’ values). A new 

time series was created to represent the variance of irrigation 

water requirement indicator over two complete years. Figure 

4(a) and Figure 4(b) show the irrigation indicator profile for 

the Daly River and Tullochgorum locations as described in 

section 3.3. 

5 Supervised Machine Learning (SML) 

In a SML engine, a set of known samples (or known data) are 

systematically introduced to the learning algorithm, which 

then get trained, updates associated weight vectors and 

internally classifies data according to the known training 

targets or classes held in a knowledge base. In the second 

stage for identification, an unknown sample is tested against 

the knowledge base and then the membership class is 

predicted. Unknown samples are analyzed using relationships 

found in the initial calibration, learning or training stage. The 

idea of testing using unknown response vectors is a well-

established technique and often referred to as cross-validation. 

Four supervised estimator, namely Sugano type ANFIS, 

Multilayer perceptron network (MLPN), Probabilistic neural 

network (PNN) and Radial basis function network (RBFN) 

were trained and tested independently for this study [1, 11]. 

Figure 3: Historic water balance indicator estimation based on integrated i-EKbase. 
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The irrigation requirement indicator’s time series profile 

was created to build a historic record of the most probable 

water management decision which was taken on a daily basis 

at a particular location. Any data driven machine learning 

approach requires training inputs and training targets. In this 

case 40 different environmental attributes of i-EKbase were 

training inputs (40 different time series representing daily data 

for same time period) where as irrigation indicator (one time 

series with same time length) based on water balance model 

was the training target. So, once the machine learning 

algorithm would be fully trained, any new daily data 

combination including all 40 attributes would then be 

processed as testing input by the trained algorithm and it 

would predict the probable water balance situation as Class 1 

or Class 2. That class prediction would then be considered and 

interpreted as vital water management decision [1, 3, 11]. 

 

 

5.1 S-ANFIS Estimator 

S-ANFIS is a kind of neural network that is based on the 

Takagi–Sugeno fuzzy inference system. Since it integrates 

both neural networks and fuzzy logic principles, it has the 

potential to capture the benefits of both in a single framework. 

The name ANFIS refers to one specific realization of such a 

system, architecture for a self-adaptive fuzzy system, taking a 

fuzzy inference system and tuning it with the back-

propagation algorithm based on some collection of input-

output data. 

5.2 MLP Estimator 

A MLP is a feed forward artificial neural network model that 

maps sets of input data onto a set of appropriate output. An 

MLP consists of multiple layers of nodes in a directed graph, 

Figure 4: Irrigation water requirement indicator and i-EKbase based estimated water balance profile for (a) Daly 

River location, (b) water balance profile for Tullochgorum location 
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with each layer fully connected to the next one. Except both 

neural networks and fuzzy logic principles, it has the potential 

to capture the benefits of both in a single framework. The 

name ANFIS refers to one specific realization of such a 

system, architecture for a self-adaptive fuzzy system, taking a 

fuzzy inference system and tuning it with the back-

propagation algorithm based on some collection of input-

output data. 

5.3 PNN Estimator 

A PNN is a feed forward neural network, which was derived 

from the Bayesian network and a statistical algorithm called 

Kernel Fisher discriminant analysis. In a PNN, the operations 

are organized into a multilayered feed forward network with 

four layers, namely, Input layer, Hidden layer, Pattern 

layer/Summation layer, and Output layer. 

 

5.4 RBFN Estimator 

A RBFN is an artificial neural network that uses radial basis 

functions as activation functions. It is a linear combination of 

radial basis functions. They are used in function 

approximation, time series prediction, and control. 

 

5.5 Experimental results 

Three different evaluation data sets, namely, DATA SET 1: 

{Training 90%- Testing10%}, DATA SET 2: {Training 60% - 

Testing 40%} and DATA SET 3: {Training 49%- Testing 

51%} were used for the training and testing of the ANFIS and 

three neural networks to estimate the generalization capability 

of these SML estimators in the current application context. 

Table 1 and Table 2 summarize all the generalization results 

(in terms of correct prediction percentages using all four SML 

estimators) for the Daly River and Tullochgorum respectively. 

Results are presented for using all three data sets {Data Set1, 

Data Set2, and Data Set3}. S-ANFIS was the best performer 

compared to the other three estimators while lesser amounts of 

data were used from training. Best result for Daly River 

location was 89.3% whereas for Tullochgorum it was 93.8% 

correct prediction. Both the best results were achieved using 

an S-ANFIS and DATA SET 2 where only 60% data were 

used for training. So achieved level of generalization was very 

encouraging in the context of predicting water balance and 

irrigation water requirement. Overall precision for Daly River 

data experiment was 90% where as for Tullochgorum was 

92%. 

 

Table 1: SML Evaluation (%) for Daly River. 

                          S-ANFIS    MLPN     PNN     RBFN   

DATA SET 1      86.3            71.8         69.2       75.2 

DATA SET 2      89.8            73.7         64.1       78.6 

DATA SET 3      74.5            60.7         65.3       68.9 

Table 2: SML Evaluation (%) for Tullochgorum. 

                          S-ANFIS     MLPN     PNN      RBFN   

DATA SET 1       91.5            66.5         73.9        68.1 

DATA SET 2       93.8            61.7         77.5        81.5 

DATA SET 3      82.7            58.9         69.1        76.8 

6 Conclusion 

This paper has three main achievements. Firstly a multi 

-source environmental knowledge framework was 

developed to provide large scale availability of relevant 

sensor-model database for any environmental 

application. Next this integrated knowledgebase was 

applied to estimate historic surface water balance for 
two locations with significant geographical difference. Finally 

supervised machine learning paradigms were experimented to 

explore generalization capability and prediction accuracy of 

this proposed water resource management solution based on 

multi sensor – model integration. S-ANFIS based 93.8% 

accuracy performance proved that newly proposed predictive 

water resource estimation method based on large multi scale 

knowledge integration could potentially make the irrigation 

decision support systems more robust and efficient. 
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