
 
1 Introduction 

Spatial OLAP (SOLAP) can be defined as a visual platform 
built especially to support rapid and easy spatiotemporal 
analysis and exploration of data following a multidimensional 
approach comprised of aggregation levels available in 
cartographic displays as well as in tabular and diagram 
displays. It generally allows the mapping, comprehension and 
comparison of the geographic distribution of studied 
phenomena. The explored data are stored in a Spatial Data 
Warehouse (SDW) as datacube, that is the multidimensional 
model implementation[16]. Usual clients of those 
technologies are first and foremost decision-makers who are 
rarely fully aware of the problems related to spatial data 
uncertainty. And yet, spatial data are primarily “false” but 
useful models of the reality [6] since they define geographic 
objects by means of  crisp boundaries even if it is not always 
possible to define exactly when objects begin and end (e.g. 
Ocean) (spatial vagueness). With such a choice of 
representation, a clear gap is created between majority of real 
world phenomena and their formal representation in spatial 
databases [5].  

On the other hand, SDW design is a very crucial step since 
the spatio-multidimensional model defines also SOLAP 
operations allowed for decision-makers. In that line, only [13] 
advocate for a methodology for designing SDW based on the 
data driven approach. Indeed, to present, different approaches 
can be used to design (spatial) DW: user-driven approach, 
data-driven approach and hybrid approach [13]. The classic 
result of design methods implementing one of these 
approaches is the multidimensional schema of a SDW which 
is fed with facts computed using the available data sources. 
However, these approaches do not take into account quality of 
spatial data (and in particular spatial vagueness), which can 
lead to incorrect analysis.  As an illustration, let us consider an 
agricultural SOLAP application to analyze the number of 
plots in France that are within the regulated distance from a 

watercourse, to help make the decision to conduct regulation 
actions on some plots in order to prevent potential water 
pollution (e.g. contamination by pesticides). In reality, those 
watercourses have a minimum extent (extent during dry 
periods) and a maximum extent (extent during periods of rise 
in the water level). Thus, a crisp representation of these spatial 
objects conducts to erroneous analysis (facts).  

To best of our knowledge only some recent works introduce 
spatial vagueness in the spatio-multidimensional model [18] 
extending it, without proposing any efficient implementation. 

Thus in this position paper, motivated by the relevance of 
exploiting spatial data marked with spatial vagueness in 
existing SOLAP systems, we propose the main outlines of a 
risk-aware SDW design approach (section 3). But first, we 
also present a state of art of the existing work (section 2). 

2 Related work 

2.1 Spatial vagueness and data warehouse design 

Geomatics community uses the term “vagueness” to 
characterize a geographic object for which it is not possible to 
define the spatial extent. For those objects, that are said to be 
ill-defined, no properties combination allows unequivocal 
identification and allocation in a discrete class or even the 
definition of their precise spatial extent. Vagueness here is not 
only a matter of shape and position, but also a matter of vague 
conception (e.g. what do we call ocean?) of the entity, 
fuzziness in its identification (e.g. when a tree is a tree?) or 
descriptive qualitative attributes (poor or rich soil) [1].  

In computer science community, the term “spatial 
vagueness” is used to describe either (1) “fuzziness” (fuzzy 
boundaries) or (2) “uncertainty” (position or measurement 
uncertainty) [17]. Fuzziness here is an inherent property of a 
spatial phenomenon that certainly has an extent but does not 
have well-defined boundaries (Ex: flood zones). That notion 
will be generalized recently by [2] to the notion of “shape 
vagueness” which is then defined as the imperfection on the 
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shape of some geographic objects. Shape vagueness is viewed 
as a matter of fuzzy boundaries or in a more general way, 
broad shape. Another term used in the community for 
uncertainty (2) is “location vagueness” which is either a 
matter of lack of knowledge about the position and shape of 
an object with an existing real boundary (position uncertainty) 
or the inability of measuring such an object precisely 
(measure uncertainty)[9, 17].  

In our work we want to focus on shape and location 
vagueness and their influences on other derived spatial data 
that could be stored in the datacube (e.g. surface of flood 
zones, distance from a watercourse etc.). The spatial data that 
have broad shape or vague location plus their derived data 
will be designated in this paper as spatial data marked with 
spatial vagueness. Note that we view spatial data, according to 
the international standards in Geomatics, as any data (e.g. 
address, shape etc.) that is used to localize spatial features in 
the geographic space.     

In order to reduce uncertainty related to spatial vagueness, 
in conventional systems (spatial databases, GIS etc.), 
researchers, throughout the years, have focused on the use of 
vague objects (as opposed to crisp objects) to represent some 
spatial phenomena in a more accurate way. Thus, four 
alternatives to the crisp object type (point, line, polyline) have 
been found: exacts models [2] where the geographic 
information is represented by a complex geometry consisting 
of at least two crisp geometries (minimum extent areas where 
the phenomenon is surely present and maximum extent areas 
where the phenomenon is probably present), fuzzy models ( 
based on the Fuzzy Set theory) that describes the possibility 
that an individual is a member of a set or that a statement is 
true, probabilistic models [4] and rough models [20]. 

Note that despite the effort, to present, the majority of GIS 
and spatial databases still manage only crisp geometries[14]. 

Regarding data warehouses projects development, its phases 
are generally: the requirements specification (the needs are 
analysed), the conceptual-design (conceptual and logical 
schemas are produced), the implementation (a physical 
schema is produced), and the feeding (Extract Transform and 
Load-ETL operations are done). There are numerous 
approaches proposed in both computer science and Geomatics 
communities to develop a data warehouse. They differ 
essentially on the approaches used for specifying 
requirements, which allows us to classified them in [13]: 
(1)the user-driven approach  where the user has an important 
role to play in defining the specifications of the data 
warehouse project, (2) the business-driven approach where 
business requirements or processes are analysed in order to 
deduce facts and dimensions (e.g. considering the metrics 
used by decision makers, to evaluate business activities, as 
measures), (3) the source-driven approach where the data 
sources are exploited in a semi-automatic/automatic way to 
extract facts and dimensions and finally (4) the hybrid 
approach where user/business driven requirements 
specification activities are usually conducted in parallel with 
the source-driven ones, leading to the creation of two data 
warehouse schemas that will be matched afterwards to obtain 
the final schema . User-driven and business-driven are often 
classified under the same category named goal-driven or 
analysis-driven [13]; also, for spatial data warehouses in 
specific, only [13] introduced data-driven and hybrid (Figure 

1) approaches. Their main contribution is specifying that the 
spatial/temporal support must be added (if non-existent in the 
sources) before the final schema delivery. Among the existing 
design methods implementing those approaches [15], some 
address the problem of quality from the logical inconsistency 
aspect by proposing definition of integrity constraints to 
ensure the consistency of multidimensional models or data[3], 
others from the quality of aggregation operations aspect [8]. 
None has specifically addressed spatial vagueness. 

 
Figure 1: Steps of the hybrid (analysis/data-driven) 

approach for spatial and temporal data warehouses [13] 

2.2 Spatial vagueness management in data 
warehouses 

The practical integration of vague objects in the data 
warehouse is in an embryonic state and it is only very recently 
that [11] have proposed an algorithmic approach based on 
Fuzzy Set theory to deal with the problem of fuzzy boundaries 
of erosion risk areas among others. On their side [18] have 
redefined the multidimensional model in order to take into 
account exact models, especially those [2, 14] have worked 
out. They introduced the term “vague” in multidimensional 
concepts, redefining spatial attributes, measures, dimensions 
and hierarchies. For example, “vague spatial attribute” is a 
spatial attribute that holds vague spatial objects (a vector 
composed of a pair of crisp spatial objects, namely the core 
and the dubiety) in its domain. There are no implementation 
tools proposed with their new definitions. 

Thus, even though integrating vague objects in data 
warehouses is a good approach to reduce the uncertainty 
related to spatial vagueness, there is still much to do in order 
to design, implement and exploit spatial data warehouses with 
vague objects. As a matter of fact, existing tools (ETL, 
SOLAP server and client) and databases [14] are not designed 
to manage vague objects. In addition, this type of solution 
does not address where spatial members or measures stored in 
the data warehouse do not have geometries though non-
geometric spatial data are common in the majority of spatial 
data cubes[16]. Yet it might be the best solution for SOLAP 
applications where the risk of use when exploiting data 
marked with spatial vagueness in the analyses is absolutely 
unacceptable no matter what.  
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For other application cases where different degree of risk of 
use can be tolerated depending on the SDW intended use, 
what possibilities producers have?  

 
3 Hybrid risk aware approach for spatial 

datacubes design 

Our main objective is to work out an approach that would help 
spatial datacube producers to design datacubes while taking 
into account, not only users’ needs and available data sources, 
but also the risks users are able to tolerate, relatively to spatial 
vagueness, for requirements specification and for the final 
datacube schema production.  In other terms, we want to 
propose a new approach for designing SDW based on the 
concept of risk related to spatial vagueness in data cubes.  

The common definition adopted in Geomatics field is the 
one proposed by [10]: “A risk is a combination of the 
probability of occurrence of a harm and the severity of that 
harm”.  Therefore, in a SOLAP systems context, a risk of use 
is the risk related to the action of exploiting or/and 
interpreting data in a decisional process. Note that harm, in 
the same context, refer to an inappropriate use of  a datacube 
[12].  

To best of our knowledge, only [12] and [7] investigate risk 
for SOLAP applications. They propose a risk management 
method whose phases are: identify possible inappropriate use 
of spatial datacube (identify risks), identify and establish 
strategies for those misuses prevention (risk analysis and 
evaluation plus responses toward the risks), monitor the risks, 
and finally document the risk-management process. Their 
preliminary work provide a first classification of risks related 
to all spatial data quality issues in data cubes, and some visual 
policy to prevent users. However, they do not give the tools to 
deduce a specific data cube (spatio-multidimensional schema 
and aggregations) based on acceptable risks in a systematic 
hybrid approach. Moreover, they do not use a formalism to 
define risks and quality issues, which is a mandatory issue for 
datacube design approaches. 

Let us introduce our proposal considering the example of 
Section 1. The risk of misuse comes essentially from 
watercourses and derived computed data such as distance 
between plots and watercourses. We know that the decision-
maker want to analyze the number of plots, plus their 
localization, that are within the regulated distance from 
watercourses. In this case, the potential risk related to the 
intended spatial datacube use is quite high and cannot be 
tolerated by the analyst. Therefore, our approach will propose, 
for example, to compute the distance by using the maximal 
extent of watercourses in order to reduce that risk (spatial 
data cube regulation). For another analyst who is only 
interested in analyzing budget spent on plots agricultural 
activities, that risk will be non-existent (data cube budget). 
Thus, our approach might propose to ignore watercourses 
vagueness and produce a classic spatial datacube. 
The steps (for requirements specification and conceptual-
design) of our proposed approach, extending the classical 
approach (Figure 1), are presented in Figure 2. In particular, in 
the requirements specification process, designer, with the help 
of identified users, define potential data cube elements (facts, 
dimensions and aggregations) and the related risks (Identified 
potential risks) (e.g. a risk on the “distance” facts). At the 

same time, we extend the conceptual design approach with a 
step (Add Spatial Vagueness Support) that allows to retrieve 
(i.e. mark) data with their spatial vagueness (e.g. for each 
watercourse the min and max geometric extensions are 
retrieved if existent). After that, the datacube schemas drawn 
from analysis-driven and data-driven approaches are matched 
(Match the two schemas). The identified risks list is updated 
at this point and then, the risks are organized (Add risks 
tolerance levels) in tolerance levels (spatial data cube 
regulation with tolerance level 1 (Low) and data cube budget 
with a tolerance level 2 (High)) with corresponding 
management strategy (particular distance computing (Low) 
and indifference (High)). The next step in the approach is the 
application of the strategies (Apply risks control strategies), 
depending on the tolerance level indicated by a particular 
user, in order to extract the final appropriate schema (e.g. in 
our case study,  for the budget manager for example, only the 
data cube budget is provided).    

 
Figure 2: Hybrid risk-aware Approach 

 
In our future work, we will elaborate conceptual-design tools 
(formalisms etc.) and semi-automatic method by extending 
existing ones [3, 12, 15]. Let us note some particularities of 
our method: 
(1) It uses traditional data sources (with crisp objects): in 

fact, the data sources are all the available transactional 
systems in the organization since the whole purpose of 
the data warehouse is to help extract new knowledge 
from the existing. This allows implementing generated 
spatial data cubes in any existing SOLAP tool. 

(2) It provides schemas, aggregations and visualization 
elements: the classic hybrid methods only provide 
schemas (multidimensional, logical or physical) as 
outputs, but our method will also specify the different 
pertinent and authorized aggregation operations, as well 
as visualization elements. For example, when 
aggregating on coarser spatial level (e.g. department) 
the max aggregation function should consider only 
measures associated with watercourses having accurate 
geometry (no spatial vagueness). About visualization, as 
already stated in [12], it is mandatory to use ad-hoc 
visual policies (e.g. red pivot table cells) to inform user 
that some measure values are associated to watercourses 
with spatial vagueness issues.  

(3) It is semi-automatic: the method allows automatic 
extractions of schemas (with mention of the aggregation 
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operations and visualization elements) from data 
sources and/or users’ requirements. The designer can 
interact with it in order to validate the schemas. Indeed, 
in complex SOLAP applications, such as agro-
environmental ones, users need several spatial data 
cubes prototypes to achieve the satisfying one. To do so, 
we will base our method on standard design languages, 
such as UML, ER, since several existing work [3] have  
already proven that they simplify, accelerate and allow 
spatial datacube conception and development process 
automation. 
 

4 Conclusion 

In this paper, we present a review of the existing works on 
spatial vagueness management in SOLAP systems. We 
noticed that the risk management perspective is a more 
interesting way to guarantee such reliability without asking 
too much extra efforts from the users. Thereby, we proposed 
steps for a risk-aware hybrid approach for designing spatial 
datacubes. We are currently working on the implementation of 
our approach extending/integrating [3, 12, 15]. We will 
validate our method using French spread data [19] 
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