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Abstract

In this paper, we present a knowledge discovery process applied to hydrological data. To achieve this objective, we apply an algorithm
to extract sequential patterns on data collected at stations located along several rivers. The data is pre-processed in order to obtain
different spatial proximities and the number of patterns is estimated to highlight the influence of defined spatial relationship. We provide
an objective measure of assessment, called the least temporal contradiction, to help the expert in discovering new knowledge. Such
elements can be used to assess spatialized indicators to assist the interpretation of ecological and rivers monitoring pressure data.
Keywords: Data Mining, Patterns, Rivers, Spatial Mining.

1 Introduction

The water system, structuring landscapes and ecosystems of
metropolitan France, covers more than 500000 km. The river
system is a fragile environment subject to the presence of many
economic activities and usages that have changed over time, and
which have altered the physico-chemical and biological quality
of water.

However, new European and French regulations demand the
preservation and restoration of rivers and their surrounding en-
vironments. If systems for monitoring water quality have been
existing for several decades, the challenge is now to construct in-
dicators to take into account the influence of uses and restoration
measures on the water quality.

To build an efficient tool, we must consider different types
of data: (1) hydrological data, here, related to water quality (2)
data related to monitoring stations (location, specific network...)
(3) hydrographic network data, its physical characteristics and
spaces associated with it: watershed, water mass ... (4) data re-
lated to human activities, and finally (5) pressure variables or
context variables such as weather data, or data related to hydroe-
cological homogeneity (such as hydro-ecoregions).

The data constitutes an important pool of information that is
difficult to globally analyze. The heterogeneity and quantity of

data handled requires the definition of specific approaches. This
requirement is particularly important as we must take into ac-
count the temporal variability of data.

In this paper, we aim at analyzing the water quality in the hy-
drological network of Saône (Burgundy) watershed. Our contri-
bution should take into account the temporal variability of the
data while considering the spatial proximity of different stations
by grouping them according to their distance, to their member-
ship in a common area, etc. For this, we address the overall
process of knowledge discovery on hydrological data.

The data is pre-processed w.r.t. different spatial proximities.
Then, we use a pattern mining algorithm to extract frequent tem-
poral sequences. Finally, to help the expert in discovering new
knowledge, we evaluate extracted sequences against a new mea-
sure, called the least temporal contradiction. This measure en-
ables to find relevant sequences that are the least contradicted
over time.

In section 2, we review the concepts of sequential pattern min-
ing and define the Least Temporal Contradiction measure. Then,
in section 3, we describe the knowledge discovery process ap-
plied on Saône watershed data and the spatial features that have
been considered. Findings with the least temporal contradiction
measure on extracted patterns are presented. The paper ends with
our conclusions and some perspectives.
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Figure 1: The Saône river watershed.

2 Definitions and methods

In this section, we give some preliminary definitions on sequen-
tial patterns and define the least temporal contradiction measure.

2.1 Preliminaries

Consider the database DB, illustrated in Table 1, which groups
all records made by stations dispersed along several rivers (e.g.
in Table 1, item A could be "good biological indicator IBGN").

Each tuple T is a transaction and consists of a triplet (id-
station, id-date, itemset): the id of the station, the date of record
as well as all current quality status of the river.

Let I = {i1, i2, . . . , im} the set of items (quality status). An
itemset is a non-empty set of items denoted by (i1, i2, . . . , ik)
where i j is an item. A sequence S is an non-empty ordered list,
of itemsets denoted by < s1,s2, . . . ,sp > where s j is an itemset.

A n-sequence is a sequence of n itemsets. For example, con-
sider quality status A,B,C,D and E recorded by the station Sta-
tion1 according to the sequence S =< (A,E)(B,C)(D)(E)>, as
shown in the Table 1. This means quality status A and E were
recorded together by Station1 i.e. at the same time. Then, Sta-
tion1 recorded B and C, the last items in the sequence were
recorded later and separately, by the same station. In this ex-
ample, S is a 4-sequence.

A sequence < s1,s2, . . . ,sp > is a subsequence of another se-
quence < s′1,s

′
2, . . . ,s

′
m > if there exist integers k1 < .. . < k j <

.. . < kp such as s1 ⊆ s′k1
,s2 ⊆ s′k2

, . . . ,sp ⊆ s′kp
. For example,

the sequence S′ =< (B)(E) > is a subsequence of S because
(B)⊆ (B,C) and (E)⊆ (E). However, < (B)(C)> is not a sub-
sequence of S because the two itemsets (B) and (C) are not in-
cluded in two itemsets of S. All quality status recorded by the
same station are grouped and sorted by date. It is called the data
sequence of the station.

A station supports a sequence S if S is included in his data
sequence (S is a subsequence of the station data sequence). The
support of a sequence S is calculated as the percentage of stations
that support S.

Let minsupp be a minimum support set by the user, a sequence
that satisfies the minimum support (i.e. whose support is greater

than minsupp) is a frequent sequence called a sequential pattern.

Table 1: Example of river quality status dataset
Client Date Items

Station1 04/01/12 (A) (E)
Station2 04/02/28 (E)
Station1 04/03/02 (B) (C)
Station1 04/03/12 (D)
Station1 04/04/26 (E)

2.2 Sequential Patterns Mining

The problem of mining sequential patterns was introduced by
[1] in the context of the basket market problem and applied with
success in many fields such as biology [14, 13], Web mining
[10, 8], anomaly detection [12], the data flow mining [7] or the
description of behavior into group [11].

To extract sequential patterns, the PrefixSpan algorithm [9]
has been adopted because of its effectiveness in large volumes
of data. This method uses a divide and conquer strategy by
performing a depth-first search with successive database projec-
tions.

A projection of the database according to a sequence S is de-
fined by the set of suffixes of sequences present in the database
and prefixed by S. The goal is to reduce the search space. In this
context, PrefixSpan analyzes shared prefixes which are present
in the data sequences. From this analysis, the algorithm builds
intermediate databases (from the original database) that are pro-
jections deducted from identified prefixes. Then, for each inter-
mediary database, PrefixSpan seeks to grow the set of sequential
patterns discovered by applying the same process recursively.

2.3 The least temporal contradiction

In the data mining domain, it is common to obtain frequent se-
quences that are more numerous than in the original data. Choos-
ing the most relevant sequences remains problematic since it is
often closely linked to the data handled. Even if spatiotemporal
data mining received a lot of attention [4, 5, 6], to our knowledge,
there is no work on filtering the most relevant frequent sequences
that are not contradicted over time.
For this, we propose to extend the measure called the least con-
tradiction (LTC), defined for association rules in [2] for two main
reasons. First, this measure is simple to understand by experts
and to implement. Second, previous work has exhibited the ca-
pacity of this measure to extract nuggets of knowledge [2] and
to resist to noise [3]. Other measures could also be extended to
temporal sequences such as lift if the definition is close to the
one of the least contradiction.

Let S be a frequent sequence, the Least Temporal Contradic-
tion of S, denoted LTC(S), is defined by:

LTC(S) =
supp(S)− ∑

sd∈Sd

supp(sd)

∑
st∈St

supp(st)

where


Sd the set of sequences including all itemsets

of the sequence S but in a different order
St the set of sequences including all items

which appeared in sequence S

Multidisciplinary Research on Geographical Information in Europe and Beyond 
Proceedings of the AGILE'2012 International Conference on Geographic Information Science, Avignon, April, 24-27, 2012 
ISBN: 978-90-816960-0-5 
Editors: Jérôme Gensel, Didier Josselin and Danny Vandenbroucke

198/392



AGILE 2012 - Avignon, April 24-27, 2012

The extension of the least temporal contradiction allows us to
keep the original spirit of the measure which was designed to
estimate how many times a rule is verified vs how many times it
is disabled. A rule that is most frequently tested as disabled is a
priori irrelevant. Like the conventional version, this measure is
normalized. Here, normalization is performed in relation to the
sum of supports of the sequences that can be built from the items
composing the relevant sequence.

For instance, consider the following sequences and their support:
S1 =< (AB)(BC)>,supp(S1) = 0.25
S2 =< (BC)(AB)>,supp(S2) = 0.10
S3 =< (AB)(CE)>,supp(S3) = 0.12
S4 =< (AB)> ,supp(S4) = 0.13
S5 =< (EA)(BC)>,supp(S5) = 0.20

Then,

LTC(S1 =< (AB)(BC)>) =

supp(S1)− ∑
sd∈Sd

supp(sd)

∑
st∈St

supp(st)

=
0.25−0.10

0.67
= 0.224

with


supp(S1) = 0.25
Sd = {S2}
St = {S1,S2,S3,S5}

We find (BC) and (AB) in S2 (which has the same itemsets as
the sequence S1, but in a different order) and found items A,B
and C in S1, S2, S3 and S5, but not in S4 which only contains
items A and B.

In the next section, we describe the knowledge discovery pro-
cess used on hydrological data.

3 Knowledge Discovery for hydrological data

In this section, we describe the different steps, illustrated in Fig-
ure 2, that have been addressed in the process of knowledge dis-
covery for the Saône watershed data. The pre-processing step
consists in transforming data by grouping stations considering
their different spatial proximity. In the pattern mining step, we
use an algorithm to extract sequential patterns in order to take
into account the temporal aspect. Finally, for the post-processing
step, we define a new measure called the least temporal contra-
diction in order to find relevant sequences that are the least con-
tradicted over time.

3.1 Data description

The database is composed of biological indicators measured on
the Saône river and its tributaries. Figure 1 describes the geo-
graphical location of watercourses and weather stations in the
considered watershed.

The data are static information related to the station itself
(its location, its reference code, etc.) and dynamic information
which corresponds to data recorded by the station equipment.
Static data is related to weather stations recorded on the water-
ways. Each station is described by:

Figure 2: Process of knowledge discovery applied to hydrologic
network.

• Lambert coordinates (x, y): to identify the spatial position
of each sampling station identified by codstace. The Lam-
bert Projection System 93 is adopted here to perform the
geo-referencing;

• A kilometric point: quantity used to locate a point along a
watercourse which is calculated by measuring, in kilome-
ters, the portion of the course between the located point and
a point serving as origin (the confluence);

• A hydro-ecoregion: homogeneous spatial unit in terms of
geology, topography and climate. This is one of the main
criteria in the typology and definition of masses of sur-
face water. Metropolitan France is divided into 22 hydro-
ecoregions and 7 hydro-ecoregions are present on the study
area;

• Codmasseau: to codify water masses, here corresponding
to surface water such as rivers, canals, a section of a river
or a section of a canal. For the Saône, there are 572 water
courses type water masses. However, we do not treat water
masses such as lakes and ponds;

• The size of water masses (Very Small, Small, ..., Extra
Large) is based on physical dimension (hydraulic geome-
try, flow rates, watershed ground surface...).

• Fish context: spatial unit in which a fish population operates
independently.

Dynamic data correspond to surveys conducted by the sta-
tions. The frequency of these records varies with time and sta-
tions. Some stations have recurrent sample data while other sta-
tions only have single sample data e.g. for ad-hoc studies. The
main items associated with records are the following:

• The date of statement;
• The IBGN: Standardized Global Biological Index (stan-

dardized calculation based on identification of macroinver-
tebrates living in rivers);

• IBD: Biological Diatom Index (standardized calculation of
diagnostic of trophic pollution).

Indicators IBGN and IBD are standardized according to the
mass of water and the hydro-ecoregion studied.

Therefore, three notes are obtained and are comparable be-
tween the different stations: one note for IBGN, a note for IBD
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and a note corresponding to the fusion of two normalized previ-
ous notes. This last information is used to estimate the condition
of the watercourse at the point of survey.

3.2 Integration of spatial dimension

Spatial data can be used to determine the relevant geographic ar-
eas to manage (a) the proximity from the location of the stations
expressed by their Lambert coordinates (geo-referenced coordi-
nate system), (b) flow aspects combining the proximity related
to water course, the flow direction and the connections between
the rivers.

We pre-processed data to divide the space into zones. The data
sequences are then obtained by combining data from the same
area and sorting them by date. Thus, we can use a conventional
algorithm to extract frequent sequences (sequential patterns), as
explained in Section 2.2.

In this paper, two spatial division techniques have been used:

• A restricted neighborhood to watercourse : for a given wa-
tercourse, two stations X and Y located on this watercourse
are considered as neighbors. For example in Figure 3, sta-
tions X , Y and Z belong to the same watercourse. These
stations are considered as a single area, and their data are
combined together.

Figure 3: watercourse zoning.

• The k-neighborhood: the space is divided into areas around
each station by exploiting the Lambert coordinates. In each
of these areas, stations that are located within an area of k
km2 centered on station X are grouped, even if these sta-
tions belonging to different watercourses. For example in
Figure 4, stations X and W are considered to be in the same
area, even if they are not on the same watercourse.

Figure 4: k-neighborhood zoning.

Thanks to these two spatial division methods, we are able to
bring together the stations within areas and thus to aggregate data
in order to extract frequent sequences. This provides the most
relevant sequential patterns with regards to heterogeneous nature
of the records.

These two approaches were used to obtained different hy-
potheses for the influence of pollution.

(i) The first hypothesis is that pollution measured in a given
watercourse at a particular station X will have a potential im-
pact on the downstream stations of X and on the other hand that
the origin of the pollution is related to a phenomenon located
upstream of X . The division by watercourse enables us to eval-
uate this hypothesis using average indicators of pollution for the
whole river.

(ii) The second hypothesis is that the pollution measured at a
station X is the result of pollution whose origin can be related
to the same groundwater source, or in neighboring agricultural
areas etc. The division into k-neighborhood is used to average
the indicators of pollution in large areas in order to observe non
local effects of watercourse associated with station X .

3.3 Mining sequential patterns

To perform experiments, we used SPMF (Se-
quential Pattern Mining Framework) implemented
by Phillipe Fournier-Viguera and available from
http://www.philippe-fournier-viger.com/spmf/.
We extract frequent sequential patterns in our data set using the
following spatial division approaches:

1. Without zoning: The data set consists of 711 sampling sta-
tions identified by station identification code (codstace).
The extraction was done with a minimum support of 0.3.
We obtained 22 frequent patterns. The size of all these pat-
terns is 1. Table 2 shows some the extracted patterns;

Table 2: Some patterns obtained with the no zoning approach.
Patterns Supp

<(ibgn_etat_TBE)> 0.32
<(ibgn_etat_TBE, ibgn_note_4)> 0.32
<(ibgn_0-10, gr_indic_0-4)> 0.32
<(ibgn_etat_BE, ibgn_note_3)> 0.31
. . . . . .

2. Watercourse neighborhood: We applied the algorithm to
a data set consisting of 233 zones with a minimum sup-
port of 0.3. We obtained 564 frequent patterns, with 110
1-sequences, 361 2-sequences, 90 3-sequences and 3 4-
sequences. Some of the results found are presented in Table
3;

Table 3: Some patterns obtained with the watercourse approach.
Patterns Supp

<(gr_indic_5-6, var_taxo_21-30, ibgn_etat_Emoy, ibgn_note_2)> 0.3
<(ibgn_note_2) (ibgn_etat_Emoy, ibgn_note_2)> 0.31
<(ibgn_11-15, ibgn_etat_Emoy, ibgn_note_2) (ibgn_11-15)> 0.35
<(ibgn_11-15) (ibgn_11-15, var_taxo_21-30)> 0.41
<(var_taxo_21-30) (var_taxo_21-30) (ibgn_11-15)> 0.36
<(var_taxo_21-30) (ibgn_11-15, var_taxo_21-30) (var_taxo_21-30)> 0.33
<(ibgn_11-15, var_taxo_21-30) (ibgn_11-15) (ibgn_11-15, var_taxo_21-30)> 0.31
. . . . . .

3. K-neighborhood: We applied the same algorithm to a data
set consisting of 223 zones with a minimum support of 0.3.
We obtained 138 frequent patterns of size 1, 1174 frequent
patterns of size 2, 658 of size 3, 104 of size 4 and 8 patterns
of size 5. In total, 2082 frequent patterns were extracted.
Some of these patterns are presented in Table 4.
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Table 4: Some patterns obtained with the k-neighborhood ap-
proach.

Patterns Supp

<(var_taxo_21-30, ibgn_etat_Emoy)> 0.48
<(ibgn_16-20, gr_indic_7-9, var_taxo_31-40, ibgn_etat_TBE, ibgn_note_4)> 0.38
<(ibgn_note_2) (ibgn_etat_Emoy, ibgn_note_2)> 0.36
<(var_taxo_21-30, ibgn_note_2) (ibgn_11-15, var_taxo_21-30)> 0.35
<(gr_indic_7-9) (ibgn_16-20, gr_indic_7-9, ibgn_etat_TBE, ibgn_note_4)> 0.39
<(ibgn_etat_Emoy, ibgn_note_2) (var_taxo_21-30)> 0.42
<(var_taxo_21-30, ibgn_etat_Emoy) (var_taxo_21-30) (ibgn_11-15)> 0.31
<(var_taxo_21-30, ibgn_etat_Emoy, ibgn_note_2) (ibgn_11-15) (ibgn_11-15, var_taxo_21-30)> 0.31
<(var_taxo_21-30) (var_taxo_21-30) (ibgn_11-15)> 0.42
. . . . . .

The number of sequences obtained by PrefixSpan algorithm
on the data set with the three spatialization approaches, and with
a minimum support set to 0.3 is respectively 22 without zon-
ing, 564 with watercourse zoning and 2082 with k-neighborhood
zoning.

It is interesting to highlight that we obtained few patterns us-
ing the first approach, unlike with the two other spatialization
approaches.

3.4 Patterns and the least temporal contradiction
measure

We have applied the least temporal contradiction measure to find
the more relevant sequential patterns. Indeed, even if in terms of
volume of processed data, a complete validation can be envis-
aged. This will not be the case when the data set is extended
nationally.

The least temporal contradiction LTC was calculated as fol-
lows:

Let SPDB be a database of sequential patterns obtained after
running the PrefixSpan algorithm [9] on the Saône river water-
shed data set by considering the spatialization of a watercourse,
for example. Given a sequence S ∈ SPDB and its support pre-
sented in Table 5:

Table 5: Sample sequence and its support
Sequence Supp

< (ibgn_16-20, ibgn_etat_T BE)(var_taxo_31-40)> 0.34

To calculate Sd , we looked for itemsets
(ibgn_16-20, ibgn_etat_T BE) and (var_taxo_31-40) in all
sequences S of the database without considering the position
which they appear in S. We find two solutions (see Table 6):

Table 6: Sequences used to calculate Sd
Sequence Supp

< (ibgn_16-20, ibgn_etat_T BE)(ibgn_11-15)(var_taxo_31-40)> 0.34
< (var_taxo_31-40)(ibgn_16-20, ibgn_etat_T BE)> 0.32

Finally, the value Sd for the sequence <(ibgn_16-20,
ibgn_etat_TBE) (var_taxo_31-40)> is 0.66.

The calculation of St is performed in a similar way to the cal-
culation of Sd . We seek the items belonging to the sequence
< (ibgn_16-20, ibgn_etat_T BE) (var_taxo_31-40) > in all se-
quences S of sequential patterns database SPDB. We found these
items in sequences shown in Table 7:

The sum of supports of the sequences st ∈ St is equal to 3.34.

Table 7: Sequences used to calculate St
Sequence Supp

< (ibgn_16-20,gr_indic_7-9,var_taxo_31-40, ibgn_etat_T BE)> 0.34
< (ibgn_16-20,gr_indic_7-9,var_taxo_31-40, ibgn_etat_T BE, ibgn_note_4)> 0.34
< (ibgn_16-20,var_taxo_31-40, ibgn_etat_T BE)> 0.36
< (ibgn_16-20,var_taxo_31-40, ibgn_etat_T BE, ibgn_note_4)> 0.36
. . . . . .

Finally, the least temporal contradiction (LTC) for the se-
quence < (ibgn_16-20, ibgn_etat_T BE)(var_taxo_31-40)> is :

LTC(< (ibgn_16-20, ibgn_etat_T BE)(var_taxo_31-40)>) =
0.34−0.66

3.34
=−0.09580838323353

The objective measure of evaluation LTC was applied to the
patterns obtained when running the selected algorithm on the
Saône data with three proposed spatial approaches. Tables 8,
9 and 10 show some sequences and the values associated with
the support value (Supp) and the value of the least temporal con-
tradiction (LTC) measure for these different spatialization ap-
proaches.

Table 8: LTC for data without zoning
Sequence Supp LTC

<(ibgn_etat_TBE, ibgn_note_4)> 0.32 1.0
<(ibgn_11-15, var_taxo_21-30)> 0.39 1.0
<(var_taxo_21-30)> 0.5 0.1236
<(ibgn_0-10)> 0.36 0.05882
. . . . . . . . .

Table 9: LTC for data using the watercourse approach
Sequence Supp LTC

<(var_taxo_21-30) (ibgn_16-20, var_taxo_31-40)> 0.3 1.0
<(ibgn_0-10, gr_indic_0-4, ibgn_etat_Emedio, ibgn_note_1)> 0.32 1.0
<(ibgn_0-10, ibgn_etat_Emedio, ibgn_note_1)> 0.34 0.0303
<(ibgn_note_4) (ibgn_etat_TBE)> 0.34 -0.963176
<(ibgn_note_1) 0.35 -0.738806
. . . . . . . . .

Table 10: LTC for data using the k-neighborhood approach
Sequence Supp LTC

<(ibgn_11-15) (ibgn_16-20, gr_indic_7-9)> 0.33 1.0
<(var_taxo_21-30) (ibgn_etat_TBE, ibgn_note_4)> 0.33 0.03125
<(gr_indic_7-9) (ibgn_11-15, var_taxo_21-30)> 0.36 0.01887
<(ibgn_etat_TBE, ibgn_note_4) (var_taxo_31-40, ibgn_note_4)> 0.31 -0.905918
<(var_taxo_21-30) (var_taxo_31-40)> 0.42 -0.215329
<(gr_indic_7-9) (ibgn_etat_BE, ibgn_note_3)> 0.31 -0.030928
. . . . . . . . .

To conclude, the support threshold allows to extract the most
frequent patterns. The LTC measure enables to rank the most
relevant frequent patterns, i.e. those which are the least contra-
dicted.

4 Conclusion and perspectives

In this paper we have presented the first steps of a data mining
project on hydrological data. In particular, we applied a con-
ventional algorithm for sequential pattern extraction according
to three spatialization approaches. We highlighted the problems
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that are posed depending on choices made in terms of spatial-
ization and their influence on the number of extracted patterns.
We have proposed an objective measure of validation: the least
temporal contradiction measure which provides to experts an ap-
propriate measure for the evaluation of obtained patterns. This
work has been conducted blind, i.e. without the intervention of
data specialists. The results underline the difficulties involved in
pre-processing search data without a thorough knowledge of the
study area in question.

The perspectives of this work are numerous. First, regarding
the data processed, additional elements on water pressures are
currently in acquisition phase. Indeed, the exact determination
of the condition of the watercourse requires other indicators that
are absent from the data presently studied. Therefore the IPR
(Fish River Index) and IBMR (Macrophytes River Biological In-
dex) are currently being acquired. Then, for the extraction phase,
we would like to compare different data mining techniques in
terms of obtained patterns. Then, we will extend this approach
by using pressure data, characterized by the land use and survey
data. The methodological issues are numerous: How to describe
the pressures on watercourses based on land use data? How to
model the relationship between land uses and river quality? And
how to take into account the heterogeneity of the data?
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