
1 Introduction

Geoprocessing or geo-computation is the processing of
implicitly or explicitly geo-referenced data and an important
of geographic information systems (GIS). A basic set of
geospatial operations for analysis and data curation tasks is
part of any modern Desktop GIS. With the rise of Web-based
Spatial Data Infrastructures (SDI) during the last decade there
is also a growing need to also support geo-computation in a
Web-based manner [3, 9]. However, the development of the
tools and services to accomplish the latter has not kept pace
with the growing amount of data sources. This is mainly due
to two reasons: 1) A lack of well-established common
understanding about the right functional granularity to support
recurring geo-computation tasks and 2) a lack of technical
mechanisms that support the exchange of processing
functionality across different distributed computation
platforms [5, 13]. This paper mainly deals with the second
challenge but also promotes some ideas that may facilitate a
solution for the first challenge.

We propose lightweight publication framework that
contracts geoprocessing logic in four dimensions: A
functional description provides a (1) a formalization of the
input and output data with respect to structure and content and
(2) a comprehensible description of the procedure that derives
the outputs from the inputs. A platform description states the
dependencies to other software that needs to be available for
deploying and executing the logic. Such information allows
choosing a proper software platform for deployment or
probing the compatibility of existing configurations. Third, a
hardware description states the hardware requirements to
reliably execute that code. As a fourth dimension we
recognize the exploitation rights associated with the
computational logic.

The paper proceeds with a conceptual model for reusable
geoprocessing logic based on the requirements of service-
oriented software design and a multi-level description
approach for implemented processing logic. This conception
is then applied to a modern heterogeneous SDI and realized
using open standards wherever possible.

2 A conceptual model for reusable

geoprocessing logic

Processing logic in an SDI suits a variety of tasks which range
from simple general tools for data massage to sophisticated
simulation models. They may be used for change and anomaly
detection, to conduct what-if analyses, data capturing and
curation, general analysis or complex simulations as well as
aggregation and transformation logic to convert and compare
data that refer to different spatial, temporal and thematic
granularities [3, 5, 6, 8]. Geoprocessing functionality serves a
vast number of tasks in different disciplines each having their
own concepts and processing tools. In this section we
investigate the requirements for published processing
functionality. These requirements comprise design guidelines
as well as expressive description and metadata for
interchangeable processing logic.

2.1 Service-oriented design guidelines

The paradigm of service-oriented computing provides a
generic means to build and describe the functionality of
software components in a user-centric way. A list of design
principles geared towards the service orientation of software
components been complied by [4]. These principles comprise
guidelines for the development of interoperable process

Moving Code – Sharing Geospatial Computation Logic on the Web
Matthias Müller

TU Dresden
Geoinformation Systems

01062 Dresden
matthias_mueller@tu-dresden.de

Daniel Kadner
TU Dresden

Geoinformation Systems
01062 Dresden

daniel.kadner@tu-dresden.de

Lars Bernard
TU Dresden

Geoinformation Systems
01062 Dresden

lars.bernard@tu-dresden.de

Abstract

Software reuse is a common paradigm for building software systems and has been proven to facilitate maintenance and increase
productivity. Valuable algorithms are produced in many scientific projects, open source initiatives or commercial software manufacturers.
Despite the success, reuse of computational logic in large distributed systems such as Spatial Data Infrastructures (SDI) remains an issue.

This paper presents an approach for describing, publishing and sharing geospatial computational logic on the Web as Moving-Code-
Packages. These packages are service-oriented software components that contain algorithmic code and its description, i.e. the contracted
functionality, platform and hardware plus basic information about the exploitation rights. We also provide a generic messaging mechanism
to publish processing logic on the Web and to make users aware of new versions and updated algorithms. The suggested approach is
expected to provide benefits in data-driven science, cloud computing environments and offers new possibilities to deal with data protection
requirements.

Keywords: Geoprocessing, Moving Code, Service-orientation, Software reuse, Spatial Data Infrastructures

Multidisciplinary Research on Geographical Information in Europe and Beyond
Proceedings of the AGILE'2012 International Conference on Geographic Information Science, Avignon, April, 24-27, 2012
ISBN: 978-90-816960-0-5
Editors: Jérôme Gensel, Didier Josselin and Danny Vandenbroucke

58/392

AGILE 2012 – Avignon, April 24-27, 2012

interfaces, coherent functional contract and implementation
and an effortless service-oriented operation.

1) Functional abstraction and discoverability. An important
principle when designing service-oriented software
components is abstraction which demands a separation of the
functional description, i.e. a “blueprint”, and the concrete
implementation of the logic as a software component. The
functional description is a formal definition of the provided
logic, e.g. in a mathematical or procedural sense. Any
implementation that is contracted to the formalized logic must
provide a 1:1 match of the functional description. A
separation of the functional description and the
implementation has several advantages in a distributed
system: 1) it enables self-describing software components, 2)
it integrates nicely with catalogues that provide search
interfaces for processing logic, and 3) allows to assess the
correctness of implemented functionality [11]. The functional
contract is to be formalized in compliance with existing
metadata standards as far as possible to ensure readability by a
large audience. To date there are hardly any useful and widely
adopted metadata standards for the description of
geoprocessing logic. Web service standards like WPS [10] or
WSDL [12] are at least clear about input and output data types
and provide metadata elements at the interface level that may
be used to reference standardized or commonly agreed
functionality.

2) Service-oriented interfaces. A standardized service
contract demands that the interface for a service-oriented
software component is not to be derived from the
implementation. This is often the case when scientific
simulation models are published: Instead of retro-fitting the
implemented logic to commonly used service interface
specifications and data exchange formats users are often
confronted with proprietary data formats or unusual
interfaces. Uncommon interfaces and uncommon data formats
are a major obstacle for the integration of valuable
functionality into larger scale infrastructures. In contrast, the
application of commonly used or even standardized data
formats is a first step towards the creation of re-usable data
processing tools. NetCDF (Network Common Data Form),
GML (Geography Markup Language) and KML (formerly
Keyhole Markup Language) are examples for such well-
known, standardized data formats in the geospatial and
environmental domain.

3) Service-oriented operation. A service-oriented view on
processing logic includes the provision of a software
component and the hardware resources required for execution.
Typical scenarios are 1) the provision of processing logic as a
Web service, 2) the deployment and execution of publicly
available software components on a private system. In case
the processing logic is provided as a Web service a
mechanism for concurrent execution has to be provided that
enables multiple parallel and independent ad-hoc executions
as well as mechanisms for fault handling or even a failover
infrastructure. In case of a mere deployment on a private
target platform, the processing logic is provided in a self-
descriptive, resource-oriented manner. A service-oriented
operation of such a tool means the effortless parameterization
and execution. In both cases the provided logic can be
invoked into larger process chains to accomplish higher level
computations. Possible applications are the execution of

chained geoprocessing tools, simulation runs with a
subsequent anomaly detection procedure or multiple parallel
executions for sensitivity analyses in environmental
modelling. In GIS it is common practice to execute functions
in a chained manner.

2.2 Multi-level Description
With the advent of Web services in geoprocessing, research
and development activities focused on service interfaces and
discovery in the emerging distributed environment leaving the
underlying implementation as black boxes. With the emerging
cloud era it became clear that various aspects of service
quality have to be treated more carefully to leverage software
reuse [13]. In cloud computing, three different levels of
service are commonly referred to: Software as a Service
(SaaS), Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS), each offering an independent layer to
characterize the capabilities and quality of software
components. Based on the functional abstraction that has been
defined in the previous section, there may be multiple
implementations, each running on a different platform (i.e.
depend on different sets of libraries and interpreters) and
requiring different hardware (Figure 1).

Figure 1: Contracted functionality, platform and

infrastructure are independent aspects of implemented
processing logic. They relate to different service layers that

are usually distinguished in cloud environments.

2.3 Exploitation Rights
With the interchange of software that provides

computational logic it becomes necessary to ship licenses or
terms of use with such a software component. We shall refer
to these as ‘exploitation rights’, which cover all legal aspects
of the implemented logic from usage rights to liabilities.
Producers can thus exclude certain use of their applications,
e.g. to modify them, or demand them to share their derivate
under the same conditions [1]. Users on the other hand are
able to choose between different implementations and decide
to use a product that satisfies their legal needs best. In
combination with the multilevel description, the four-
dimensional description model is obtained (Figure 2).

SaaS

PaaS

IaaS � Memory Consumption
� CPU Time

� Interpreters
� Dependencies

� Functionality
� Interface

Multidisciplinary Research on Geographical Information in Europe and Beyond
Proceedings of the AGILE'2012 International Conference on Geographic Information Science, Avignon, April, 24-27, 2012
ISBN: 978-90-816960-0-5
Editors: Jérôme Gensel, Didier Josselin and Danny Vandenbroucke

59/392

AGILE 2012 – Avignon, April 24-27, 2012

Figure 2: Conceptual description model for interchangeable
processing logic. The four principal dimensions are

considered independent and relate to different aspects
associated with a reusable software component.

3 Operational Architecture
The proposed concept is envisaged to be operated in
heterogeneous distributed systems. Figure 3 shows an
architectural overview: Possible application contexts range
from stand-alone applications in GIS workstations, via
service-based applications where clients invoke remote
services to perform GIS tasks, to cloud environments offering
computational power and bandwidth to process large datasets.
While the effective geoprocessing tasks are either conducted
on servers or workstations, the required geoprocessing logic is
provided by geoprocessing feeds that can be consumed like a
typical newsfeed by humans or machines. The code is stored
in Moving Code Packages that comply with the requirements
from the previous section. All participants that actively
perform geoprocessing can bind to one or more geoprocessing
feeds and digest these Moving Code Packages.

Figure 3: Architectural overview.

The presented approaches have been partly tested in a
proof-of-concept implementation in the frame of the Open
Geospatial Consortium’s OWS-8 testbed and are further
developed in the projects GLUES (Global Assessment of

Land Use Dynamics, Greenhouse Gas Emissions and
Ecosystem Services) and EO2HEAVEN (Earth Observation
and Environmental modeling for the mitigation of Health
risks).

3.1 Moving Code Packages
An initial approach to transport geoprocessing logic across
system borders has been presented by Mueller et al. [9]. Their
so-called Moving Code Packages are structured zip-files
which contain an interoperable description of the processing
logic and a compliant implementation. A mapping mechanism
between the standardized functional description and a
platform-specific interface is used to propagate data in and
out. The application of standardized service interfaces
satisfies the requirements 1) and 2) set out in section 2.1.

Figure 4 presents an enhanced Moving Code Package that
enables the multi-level description and the statement of
exploitation rights, which were proposed in section 2. The
contracted platform describes high-level dependencies, such
as 3rd party libraries and software packages that must be
available at the target platform. The description of the
contracted infrastructure allows testing the provided hardware
resources to ensure a stable and possibly concurrent execution
(requirement 3) in section 2.1).

Figure 4: A schematic view of an enhanced
Moving Code Package (simplified)

The schema is designed for extensibility, allowing different
functional representations of the provided logic. Currently we
support the WPS standard as a basic means to communicate a
declarative specification of the implemented logic but there
are other standards like WSDL which is widely adopted
outside the geo-community. Clearly also any of those
extensions has to fulfill the requirements 1) and 2) from
section 2.1. Functional descriptions may be provided in
different formats and encodings. Different disciplines such as
hydrology, environmental systems modeling, atmospheric or
marine research may already have well established functional
descriptions in place.

The contracted platform is formalized as a list of unique
identifiers of software components that have to be installed at

Contracted
Functionality

Contracted
Infrastructure

Contracted
Platform

Legal
Contract

mcp::ContractedFunctionality

+ maxMemoryConsumption [0..1
+ commonMemoryConsumption [0..1]
+ minCPUCapacity [0..1]
+ commonCPUCapacity [0..1]

mcp::ContractedInfrastructure

+ runtimeComponent [1..*]

mcp::ContractedPlatform

+ CreativeCommonsLicense [0..1]
+ TraditionalLicenseDocument [0..1]
+ ...

mcp::ExploitationRights

wps::ProcessDescription
(inherits from WPS specification)

+ workspaceRoot [1]
+ executableLocation [1]
+ containerType [1]
+ executionParameters [1..*]

mcp::Workspace

implements

complies

complies

liable to

...
(inherits from other standard)

Data a
Servvrr ices

Processing
Servrr ices

Geopror cessing
FeedsFe

Worksts ation
Componentp

Registryg

Thin Client

CClouClouddd ServicesSS

Processis ng
Servrr icei

Proxy Feed

Data Servrr ices

HTTP / Internet

Multidisciplinary Research on Geographical Information in Europe and Beyond
Proceedings of the AGILE'2012 International Conference on Geographic Information Science, Avignon, April, 24-27, 2012
ISBN: 978-90-816960-0-5
Editors: Jérôme Gensel, Didier Josselin and Danny Vandenbroucke

60/392

AGILE 2012 – Avignon, April 24-27, 2012

the target machine and thus form a runtime environment.
Individual components are represented by unique identifiers
which are further described at the component resolver shown
in Figure 3. Components may also aggregate other
components leading to more coarse grained runtime
specifications. This facilitates the establishment of commonly
available geoprocessing platforms and supplies PaaS
providers with a registry of software environments that are
commonly used for geoprocessing. It also provides a source of
documentation for setting up a specific runtime environment
required by a piece of processing logic.

The contracted infrastructure is described in terms of
required CPU power and memory capacity as these factors are
the primary determinants of a service-oriented operation in a
target environment. When the deployment of a Moving Code
Package is considered on the target platform, the execution
engine may check for the availability of the required hardware
resources and report warnings if it expects problems. Users
may also decide to select resource-efficient implementations if
multiple Moving Code Packages offer the same functionality.

An interoperable approach to the communication of
exploitation rights is the Creative Commons license. This type
of license is supported by the enhanced schema. However, the
usual commercial license is not modularized or standardized,
making it necessary to study legal texts. For such cases, a
traditional license document may be referenced in the package
description.

3.2 Geoprocessing Feeds

The Atom Syndication Format [7] is a lean extensible
XML-based format for platform independent information
exchange. It is applied to range of applications from simple
exchange of text news, multimedia content or general data.
News readers as well as other aggregator software may
subscribe to Atom feeds and obtain new or updated content by
a pull mechanism. The format’s capabilities to exchange
information in multiple representations for humans as well as
machines and the provision of a simple versioning mechanism
make it a suitable exchange vehicle for Moving Code
Packages. Atom feeds delivering geoprocessing functionality
are called geoprocessing feeds in this paper. The human-
readable part of the feed’s content allows users to study the
provided functionality and pick those packages that suit their
needs. The machine-readable part of the same feed can be
invoked by processing services or GIS workstations
(Figure 3). Additionally, after subscription these machines
may occasionally synchronize with the geoprocessing feed to
obtain updated logic.

For cloud environments geoprocessing feeds facilitate the
distribution of logic across a network of processing nodes.
The processing services in the cloud (Figure 3) provide well-
known software platforms (listed in the component registry)
and hardware. Their functionality is drawn from the original
geoprocessing feeds outside the cloud. The proxy feed in the
cloud aggregates all the functions that are to be distributed to
the cloud’s processing services. Additional to re-grouping or
filtering the original feeds’ contents, such a proxy feed may
serve further purposes. Such an instance may offer a selection
of processes that have passed additional security checks to
ensure that the code is not harmful or that have been tested to
deliver a certain Quality of Service (QoS) in the target

environment. Hosting the Moving Code Packages in-house
also increases resilience to external server outages.

4 Outlook

The outlined approach will help to better judge the fitness
for purpose of geoprocessing logic. It is an important step
towards the setup of a community repository of simulation
and scientific computation logic and functionality as well as a
powerful tool for a seamless and comprehensible
documentation in geospatial data handling. Progressing in the
design of well-defined descriptions of the geoprocessing logic
is one of the future research challenges [2]. The four-
dimensional contract for processing logic helps to share
existing code with many users and removes obstacles that
keep people from re-using each other’s implementations. The
recognition of legal issues provides a foundation to
incorporate commercial participants into such a community.

The creation of a basis for such a community is our plan for
the future. The community building process will be promoted
based on a web platform approach like the Apple iTunes App
Store or the Android Market. Providers of processing logic
can publish their algorithms on such a marketplace, and all
other users will be able to consume them. A key feature of this
exchange platform is an integrated review process that allows
all participants to comment and rate the published algorithms.
Such a review process can be extended towards quality
guarantees. The outlined concept already provides a lot of
information that helps to create quality metrics for the
functional description and the runtime behavior. An improved
quality assessment that allows verifying these metrics also
requires the integration of a testing environment. This requires
test data to be shipped with the Moving Code Package. A
virtual testing environment that is accessible though the
community platform allows users to effortlessly run and test
the algorithms. A new form of a trust layer needs to be
implemented so that a newly submitted algorithm can be
checked for containing viruses and/or other irregular
malicious code.

A common description format and an exchange platform for
computational logic can also facilitate the publication of
scientific projects. Supplements of well-known journals
already support the publication of related software. The
proposed approach already contains the required information
and maps easily to Software publishing styles of scientific
journals.

Acknowledements

The research leading to these results has received funding
from the German Federal Ministry of Education and Research
under grant agreement n° 01LL0901C and the European
Community's Seventh Framework Programme (FP7/2007-
2013) under grant agreement n° 244100.

References

[1] Hal Abelson, Ben Adida, Mike Linksvayer and Nathan
Yergler. ccREL: The Creative Commons Rights
Expression Language. 2008.

Multidisciplinary Research on Geographical Information in Europe and Beyond
Proceedings of the AGILE'2012 International Conference on Geographic Information Science, Avignon, April, 24-27, 2012
ISBN: 978-90-816960-0-5
Editors: Jérôme Gensel, Didier Josselin and Danny Vandenbroucke

61/392

AGILE 2012 – Avignon, April 24-27, 2012

[2] Johannes Brauner, Theodor Foerster, Bastian Schaeffer
and Bastian Baranski. Towards a Research Agenda for
Geoprocessing Services. In Proceedings of the 12th
AGILE Conference, Hannover, 2009.

[3] Max Craglia, Michael Goodchild, Alessandro Annoni,
Gilberto Camara, Michael Gould, Werner Kuhn, David
Mark, Ian Masser, David Maguire, Steve Liang and Ed
Parsons. Next-Generation Digital Earth: A position paper
from the Vespucci Initiative for the Advancement of
Geographic Information Science. International Journal of
Spatial Data Infrastructures Research, 3, 2008.

[4] Thomas Erl. SOA Principles of Service Design: Prentice
Hall International, 2007.

[5] Jim Gray. eScience: a transformed scientific method. In:
Anthony J. G. Hey, Stewart Tansley and Kristin Michele
Tolle, editors, The fourth paradigm: data-intensive
scientific discovery, Microsoft Research, Redmond, WA,
pages xvii-xxxi, 2009.

[6] Sören Haubrock, Falko Theisselmann, Henry Rotzoll and
Doris Dransch. Web-based management of simulation
models - concepts, technologies and the users' needs. In:
R. S. Anderssen, R. D. Braddock and L. T. H. Newham,

editors, Proceedings of the 18th World IMACS Congress
and MODSIM09 International Congress on Modelling
and Simulation, pages 880-886, 2009.

[7] IETF. The Atom Syndication Format. 2005.
[8] ISO. Geographic information - Services. ISO

19119:2006, 2006.
[9] Matthias Müller, Lars Bernard and Johannes Brauner.

Moving Code in Spatial Data Infrastructures - Web
Service Based Deployment of Geoprocessing
Algorithms. Transactions in GIS, 14(S1): 101-118, 2010.

[10] OGC. OpenGIS Web Processing Service, Version 1.0.0.
OGC document 05-007r7, 2007.

[11] Stephen P. Prisley and Michael J. Mortimer. A synthesis
of literature on evaluation of models for policy
applications, with implications for forest carbon
accounting. Forest Ecology and Management, 198(1-3):
89-103, 2004.

[12] W3C. Web Services Description Language (WSDL)
Version 2.0. 2007.

[13] Hongji Yang and Xiaodong Liu. Software Reuse in the
Emerging Cloud Computing Era: IGI Global, 2012.

Multidisciplinary Research on Geographical Information in Europe and Beyond
Proceedings of the AGILE'2012 International Conference on Geographic Information Science, Avignon, April, 24-27, 2012
ISBN: 978-90-816960-0-5
Editors: Jérôme Gensel, Didier Josselin and Danny Vandenbroucke

62/392

