
1 Introduction 

Cancer mortality and incidence maps are used by public 
health officials to identify areas of excess and to guide 
surveillance and control activities. Quality of decision-making 
thus relies on an accurate quantification of risks from 
observed rates which can be very unreliable when computed 
from sparsely populated geographical entities or for diseases 
with a low frequency of occurrence. By analogy with the 
terminology used in the geostatistical literature [2,3], three 
types of uncertainty can be distinguished: 

1. Local uncertainty: uncertainty prevailing over a 
single geographical entity at a time; for example 
uncertainty about cervical cancer mortality rate for any 
given county in Figure 1. 

2. Spatial uncertainty: uncertainty about values of 
health outcomes recorded simultaneously over several 
geographical units; for example uncertainty about the 
existence of aggregates of counties with high cancer 
mortality rates in Figure 1. 

3. Response uncertainty: uncertainty about results of 
the application of a transfer function (e.g. cluster 
detection algorithm) to health outcomes; for example 
spatial uncertainty translates into a lack of reliability 
of some of the spatial clusters detected on the map of 
mortality rates. 

In all three cases, the uncertainty can be modeled 
empirically through the generation of a set of possible 
outcomes, known as “space of uncertainty” [2]. For example, 
Figure 1 shows the posterior cumulative distribution of 
cervical cancer standardized mortality risk (SMR) derived for 

a few counties (local uncertainty) using the popular Besag, 
York and Mollie’s (BYM) model.  

Spatial uncertainty is modeled through the generation of a 
set of simulated risk maps (also known as “realizations”), 
each consistent with the information available, such as a 
spatial correlation function. For example, Figure 2 (top) 
shows twenty simulated maps of cervical cancer mortality 
rates generated by p-field simulation [3,9]. Spatial features 
consistently observed across all simulations (e.g. lower 
mortality risk in Utah) are deemed more likely than the ones 
that are displayed by a few realizations.  

Uncertainty about the location of significant clusters of low 
or high values can be quantified by propagating the 
uncertainty attached to cancer mortality rates through the 
local cluster analysis (LCA). For example, the twenty 
simulated risk maps underwent a LCA based on the LISA 
statistic [1], leading to twenty maps of significant Low-low or 
High-high clusters (Figure 2, middle graph).  

Although the concepts of stochastic simulation and 
propagation of uncertainty are not new, it appears that little 
attention has been paid to the definition of the space of 
uncertainty, and related issues such as the equivalence of 
spaces of uncertainty generated by different algorithms, and 
the number of realizations required for sampling this space 
[10]. To quote Myers [5], “Underlying this diversity of 
algorithms was an implicit but never stated assumption that 
there was some form of equivalence and hence the difference 
was only computational. . . Neither of these implicit 
assumptions has really been tested or even considered, most 
users do not use multiple algorithms and make comparisons 
nor do they generate multiple finite sets of realizations to 
compare between the sets.'' 
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Abstract 

In the analysis of cancer mortality and incidence maps, three types of uncertainty typically arise: (1) the uncertainty about the value of the 
health outcome over a single geographical unit (local uncertainty), (2) the joint uncertainty about outcome values recorded simultaneously 
over several geographical units (spatial uncertainty), and (3) the uncertainty about the existence of significant clusters of high disease risk 
resulting from the propagation of spatial uncertainty through the local cluster analysis (response uncertainty). In each case, the probabilistic 
way to assess the uncertainty consists of determining the distribution or set of possible outcomes (e.g., local risk value, risk map, or cancer 
cluster map), which is referred to as the space of uncertainty. The characterization and visualization of the different spaces of uncertainty is 
still an unresolved issue. This paper presents a distance-based approach to: 1) quantify differences between simulated maps using different 
distance metrics (e.g. Euclidean versus LISA-based distances), and 2) project the ensemble of maps into a low dimensional Cartesian space 
using metric multi-dimensional scaling (MDS). This approach is used to visualize the impact of simulation algorithm, distance metric, and 
number of realizations on the extent of the spaces of uncertainty. Three-dimensional displays of series of quantile maps, probability maps or 
simulated risk maps are also proposed as an innovative tool to visualize and communicate local and spatial uncertainty to end-users. The 
discussion is illustrated using county-level mortality rates for cervical cancers recorded in 118 counties of the Western US. 
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Figure 1: Posterior distributions of cervical cancer standardized mortality rates (SMR) modeled using the Besag, York 
and Mollie’s (BYM) model. Note the narrower distribution (steeper CDF) for the heavily populated Santa Barbara 
County which indicates the smaller uncertainty (greater reliability) of the SMR value.  

 

 

Figure 2: Twenty simulated maps of cervical cancer mortality rates (i.e. SMR multiplied by area-wide rate of 3.08 
deaths/100,000 habitants) generated by p-field simulation and the corresponding maps of significant clusters of high 
or low values detected using a local Moran’s I cluster analysis (Transfer Function).  Classification results are 
summarized by mapping for each county the most likely (ML) classification inferred from 20 realizations. The 
intensity of the shading increases as the classification becomes more certain (i.e. larger likelihood). 
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From the user’s perspective, it is also important to be able to 
visualize the uncertainty in the local and spatial models of risk 
values. Plotting cumulative distribution functions as in Figure 
1 is unsatisfactory since it quickly generates visual clutter and 
does not allow an easy visualization of probabilities of 
exceeding specific thresholds for example. Similarly, the 
innovative 3D display of simulated maps and corresponding 
cluster classifications in Figure 2 is not practical for large 
numbers of realizations. 

Using the choropleth map of county-level disease rates in 
Figure 1, this paper describes preliminary results on: 1) the 
representation of local and spatial uncertainty by three-
dimensional displays, and 2) the mapping and ranking of 
simulated maps generated by different algorithms using a 
recently developed distance-based approach [7,8]. 

 
 

2 Visualizing local and spatial uncertainty 

Although stochastic simulation offers a way to generate a 
large number of potential scenarios, the burden of manually 
scrolling through dozens of different maps will test the 
patience of most users and be little informative. The 
information contained in the set of simulated maps is thus 
often summarized through a static display of probabilities of 
exceeding particular threshold or some measures of the spread 
of the posterior distribution. By doing so, one however fails to 
depict the uncertainty about spatial features and essentially 
maps the area-specific measures of uncertainty provided by 
kriging and other rate smoothing methods. Similarly, the 
information provided by the whole local probability 
distribution (e.g. Figure 1) is often summarized by computing 
the probability of exceeding a particular threshold and 
summary statistics, such as mean or variance, which is 
unsatisfactory when the distributions are non-parametric.   

By analogy with recent work accomplished in the area of 
3D visualization of space-time datasets, we explored the use 
of 3D displays (i.e. vertical stacks of maps) where the vertical 
dimension can correspond to a quantile, a probability or a 
realization number. These 3D graphs were all created using 
SGeMS (Stanford Geostatistical Modeling Software [6]) 3D 
visualization panel and FORTRAN programs developed to 
format the data. 

Figure 3A shows a vertical stack of 100 maps of mortality 
risk values corresponding to a cumulative probability 
increasing from zero to 1.  In other words this series of maps 
correspond to the percentiles of the probability distributions 
displayed in Figure 1 for a few counties. As the probability 
increases, the risk value increases. Volume rendering and 
transparency settings were used to attenuate the visual 
obstruction of inner cells and highlight only the information 
relevant to certain users while less important information is 
not completely masked to avoid losing the overview of the 
map. In this example, SMR above 0.75 were partially hidden 
to highlight the large likelihood for the risk to be smaller than 
0.75 (i.e. smaller than 75% of the average risk over the study 
area) in Utah, while larger risks can be observed along the 
West Coast.  

The counterpart of the series of quantile maps is found in 
Figure 3B that shows a vertical stack of 100 maps of 
cumulative probabilities corresponding to a risk threshold 
(SMR) increasing from 0.5 to 2. As the threshold increases, 
the probability for the risk to be below that threshold rises. In 
this example, probabilities below 0.4 and above 0.6 were 
partially hidden to highlight the 0.2-probability interval 
centred on the median, i.e. the interval bounded by the 40th 
and 60th percentiles of the probability distributions of Figure 
1. The width of the interval reflects the uncertainty about the 
risk values while the position of the interval along the vertical 
axis indicates the magnitude of the standardized mortality 

Figure 3: Three-dimensional displays of local and spatial uncertainty: (A) stack of standardized risk quantile maps 
(SMR > 0.75 are partially hidden), (B) stack of probability maps ([0.4,0.6] probability intervals are highlighted by 
hiding partially all probabilities < 0.4 and > 0.6), (C) stack of incrementally different simulated risk maps (risk values 
< 3.5 deaths per 100,00 habitants are partially hidden) and (D) the corresponding clusters of high and low values. 
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risk. For example, intervals are wider and located at the 
bottom of the threshold axis for counties in Utah (forefront), 
indicating low risk and large uncertainty because of sparse 
population. On the contrary, intervals are narrower and 
located toward the top of the vertical axis for the West Coast 
(background) where risks and population are larger. 

Spatial uncertainty is represented in Figures 3C&D that 
show vertical stacks of 50 simulated risk maps (or 
corresponding cluster classifications) where the vertical axis is 
the realization number. To allow the eye to catch gradual 
changes successive realizations must be similar enough. Such 
a similarity can be achieved by ranking the realizations 
appropriately (e.g. using MDS results described below) or by 
using a variant of p-field simulation algorithm that generates 
realizations that are incrementally different [3,9]. The later 
was used here. The 3D display of realizations combined with 
volume rendering and transparency settings (Fig. 3C) allows 
one to distinguish areas that remain stable over all realizations 
(low uncertainty) from those where large fluctuations occur 
between realizations (high uncertainty). The stack of 
classified maps (Fig. 3D) illustrates the location and reliability 
of clusters of low and high risks. In this particular example, 
Utah cluster of low risk is highly certain whereas the cluster 
of high risk in Arizona is less certain since it appears only in a 
dozen realizations located at the top of the stack.  

3 Representing spatial uncertainty using 
multi-dimensional scaling 

Once an ensemble of simulated maps (realizations of a 
random function) have been created and visualized using 
three-dimensional displays or other means, a key step is to 
assess and summarize the variability among this potentially 
large number of simulations that can be themselves fairly 
complex. For example, the generation of 1,000 simulated 
maps of county-level cancer mortality risks over the 
continental US would translate into more than 3 millions 
numbers. The distance-based approach, illustrated in Figure 4, 
proceeds in two steps: 
1. a distance matrix D that quantifies the dissimilarity 

between any two simulated maps is created (e.g. the 
Euclidean distance was computed for all possible pairs of 
the 50 simulated maps in Figure 4), 

2. the ensemble of realizations is projected into a low 
dimensional space (e.g. 2D at the bottom of Figure 4) 
using a metric multi-dimensional scaling (MDS) of the 
distance matrix. Points close in this 2D space correspond 
to simulated maps that display similar spatial features 
(e.g. pairs 3-27 and 35-45). 

  

Figure 4: Schematic diagram illustrating the use of multi-dimensional scaling (MDS) to visualize the space of 
uncertainty modeled by a set of 50 simulated maps of cervical cancer mortality risk. Differences between any two 
maps i and j are first quantified using a distance metric i,j (e.g. Euclidean distance here). The matrix D of distances is 
then used to map all simulated maps into a Euclidean two-dimensional space using multidimensional-scaling. Points 
close in this 2D space correspond to simulated maps that display similar spatial features (e.g. pairs 3-27 and 35-45). 
More than two dimensions might be required if the Euclidean distance between any two points in the 2D space is 
poorly correlated with the corresponding dissimilarity in the distance matrix D. 
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This realization-based representation of uncertainty 

provides an effective way to visualize the variability among 
realizations, rank them according to specific features (e.g. 
spatial connectivity) and select a subset of representative 
realizations. For example, Figure 5 shows the projection of 50 
realizations generated using two types of p-field simulation: 
1) Srivastava’s technique that generates a series of realizations 
that are incrementally different through the use of a 
probability field that is much larger than the area to be 
simulated [4,9], and 2) general implementation that creates 
realizations in no specific order. The realizations in Figure 5 
are linked in the order they were generated and the distance-
based representation clearly illustrates the natural ordering of 
the realizations generated by the second approach where 
successive realizations are closer in the 2D space.  

 
 

3.1 Distance metric 

The cornerstone of the approach is the definition of a distance 
metric that is tailored to the application at hand. For health 
studies concerned with the identification of clusters of high 
risks, a metric based on a Local Indicator of Spatial 
Autocorrelation (LISA, [1]) seems more appropriate than the 

general Euclidean distance. The 50 realizations of Figure 4 
underwent a MDS analysis using as distance metric the 
average absolute difference between local Moran’s I (LISA-
based distance) instead of the average absolute difference 
between simulated risks (Euclidean-based distance). These 
realizations are displayed in Figure 6 where the size of each 
dot (i.e. realization) is proportional to the number of counties 
that were allocated to a cluster of high risk. Clearly, using the 
LISA-based metric (Figure 6B) leads to a better 
discrimination of simulated maps according to the frequency 
of clusters of high values than the use of the Euclidean-based 
distance in Figure 6A.  
 
 
3.2 Algorithmically-defined spaces of uncertainty 

The use of stochastic simulation in test of hypothesis relies on 
the assumption that the space of solutions is sampled fairly 
exhaustively and uniformly. Some believe that the space of 
uncertainty must be theoretically defined outside the use of a 
particular algorithm. Others state that the space of uncertainty 
can only be defined through the algorithm and consists of all 
possible realizations that could be generated by the algorithm. 
This view is particularly suited to the space of uncertainty of 

Figure 5: Illustration of the ability of multidimensional-
scaling to cluster in a 2D space simulated maps that are 
similar. The 50 realizations in the top space (A) were 
generated using a variant of p-field that creates a series 
of realizations that are incrementally different, while 
realizations in the bottom space (B) were generated in a 
random order. Realizations are linked according to the 
order in which they were created.  
 

Figure 6: Impact of the choice of a distance metric 
(Euclidean versus LISA-based distance) on the 
projection of the set of 50 simulated maps of cervical 
cancer mortality risk. The size of each dot represents 
the number of counties classified as high-high (HH) 
clusters in that simulated map. Using the LISA-based 
metric (B) leads to aggregates of simulated maps with 
similar frequency of HH clusters, thereby facilitating 
the selection of extreme scenarios.  
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responses or output values which cannot be defined 
analytically because of the complexity (non-linearity) of 
transfer functions, such as local cluster analysis. In the latter 
case, the term of algorithmically-defined space of uncertainty 
is used [2]. Figure 7 indicates that the spaces of uncertainty 
generated by different algorithms have different size and 
shape despite a reasonable amount of overlap. 

 
 

4 Conclusions 

Mapping the space of uncertainty through a multi-dimensional 
scaling (MDS) analysis of distances between simulated maps 
is very recent and its application has been confined to 
uncertainty in petroleum reservoir models [7]. It is also a 
complete generalization of the experimental design technique 
to reflect the ensemble of sources of uncertainty [8]. 

The characterization of the different algorithmically-defined 
spaces of uncertainty has important implications for tests of 
hypothesis that use these realizations to derive p-values. In the 
future, simulation studies will be conducted to assess their 
precision (extent of space of uncertainty), accuracy (ability for 
the space to include the “true” map), and uniform sampling 
(density of realizations). In addition to the simulation 
algorithm, the impact of the number of realizations on the 
properties of the space of uncertainty will be explored, 
allowing answering important questions such as: Does the 
extent of the space of uncertainty increase monotonically with 
the number of realizations? Are some algorithms better suited 
to generate extreme scenarios using fewer realizations? How 
many realizations are needed to achieve stable p-values in 
randomization-based tests of hypothesis? 
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Figure 7: 2D mapping of 50 realizations simulated by 
three different types of algorithms (BYM model, p-field 
simulation with and without incrementally different 
realizations). Note how the different spaces of 
uncertainty overlap, yet are not identical.  
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