
1 Introduction 

In 2008, the city of Lausanne (135’000 inhabitants, 16km2) 
promoted a GIS project on schools and transportation. The 
goal was to visualize the location of all the schoolchildren 
and to compute their shortest path distance to school. 
Consequently; a public transportation subsidy program was 
developed based on the obtained results. The idea of the 
project was to promote walking and use of public transport 
instead of using private one. The datasets created during this 
project will be used in this paper and are property of the 
“Service du cadastre de Lausanne” [1]. 

Even if network analysis algorithms, such as routing, have 
been implemented for many years in GIS, researchers are still 
working on developing new routing algorithms [2] or 
optimizing them for large-scale networks [3]. The resulting 
network analysis tools have been used and customized by 
researchers to study pedestrian network structure as well as 
pedestrians behaviour. Based on the comparison of Euclidean 
and shortest path distances, the first goal of this paper is to 
provide a method that evaluates the connectivity of a 
pedestrian network. The second goal is to improve the 
network connectivity by detecting potential shortcut locations. 

 

2 Datasets 

2.1 The full street network (Gf) 

From now on we will consider this network (fig.1) as a graph 
Gf = (Vf, Ef) where Vf is the set of n nodes, made out of road 
intersections, dead ends and building locations (i.e habitation, 
administrative, commercial and industrial constructions), and 
Ef is the set of m edges connecting these elements together. 

Figure 1: Pedestrian network of Lausanne

 

 

2.2 Address points dataset (A) 

The address points 
dataset (A) contains all 
the building locations of 
the town. White zones 
(fig.2) mainly depict 
recreation areas such as 
lakeside (bottom left) or 
forests (upper part of the 
city) and have very few 
constructions. 

Figure 2: Building locations 

2.3 Official district areas 

The city is statistically divided into k=1,…,81 district areas 
(fig.3) Zk covering areas of varying surface area Sk=S(Zk) and 
counting n(Ak)=n(A(Zk)) address points. 
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Figure 3: Official statistical districts (k =1,…,81) 

 

 
This paper will be mainly illustrated by the greyed districts 

described in the following table.  
 

Table 1: characteristics of the main districts 
Name k n(Ak) Sk (km2) 

“Montoie” 5 195 0.26 
“Marc-Dufour” 10 293 0.28 

“Rue Centrale" 27 441 0.22 
“Plaisance” 39 255 0.29 
“Bellevaux” 54 288 0.36 

“Av. 
d’Echallens” 

68 177 0.15 

“Montétan” 71 161 0.14 

“Tivoli” 77 121 0.20 
 

3 Methodology 

Our method is based on the comparison between shortest path 
distances1 (dij) and Euclidean distances (Dij) between pairs of 
address points. This is done in ArcGIS by creating an OD 
cost matrix. The distances are symmetric, with a null 
diagonal, and metric; that is, dij = dji ; dii=0; dik+dkj>=dij and 
similarly for Dij. With these data, two indexes will be 
computed at the scale of each address point (local analysis) 
and at the scale of each district (regional analysis): 
 

Centrality index: 
 
Local:   
 
 

The centrality index is defined as the average shortest-path 
distance from a place i to all the others locations inside the 
district Zk. This index constitutes a local value and can easily 
be mapped as graduated colours points. 

Regional values will allow us to compare the districts. They 
result from the aggregation of local values. The coefficient 

reduces the sensitivity of the index to the district’s 

                                                                 
1 dij is calculated through the Dijkstra algorithm [4] 

implemented in ArcGIS. 

size but not to its shape.  
 

 
Regional:               

 
 
Sinuosity index: 
 
  
 

By construction, δij ≥0. Note that this index is an alternative 
to the one commonly used in hydrology defined as: δij =dij/ 
Dij[5]. 
 
Local:   
 
 
Regional:  

 
 

3.1 Visualisation and interpertation of the indexes 

in ArcGIS. The case of the “Montoie” district 

The pedestrian network 
of “Montoie” (fig.4) 
has the particularity of 
having one main street 
that loops inside the 
district (shown in red). 
The district has 195 
address points, creating 
195*(195-1)/2=18’915 
pairwise pedestrian 
distances. 

Figure 4: pedestrian network of 
“Montoie” (Z5) 

 
                 

3.1.1 dij(Zk) and δij(Zk) 

In ArcGIS dij appears as straight lines that are linking all the 
address points of a district. This representation becomes 
quickly unreadable if all lines are displayed. For this reason 
it’s more convenient to display only lines originated from one 
point only. For example, we can choose the most central point 
of the “Montoie” district that is argmin(d̅i) (fig.5), the address 
point i minimizing d̅i, or the least central location 
(argmax(d̅i); fig.6). This way we can visualize dij values 
(from green to red) through straight lines. In fig.6, we can 
clearly see that argmax(d̅i) (the church of the district!) has its 
lowest dij values oriented on its left and right (green lines).  
Its highest values point towards the north of the district (red 
lines) and it suggests that the connectivity between the lower 
and upper part of the district could be improved by adding 
new pedestrian paths. The arc (in purple) has a radius of 
380m and is centered on the argmax(d̅i) point. We can notice 
that the values of dij still vary a lot around this Euclidean 
distance. The argmin(d̅i) (fig.5) can be considered as the most 
central address point. It is located at the entrance of the 
district and does not match the centroid of the district’s shape 
shown as a black dot; by contrast, this centroid corresponds 
by a few meters to the location of argmin(D̅i) (not shown 
here). As the values illustrated in fig.5 and fig.6 have their 
own data classification (natural breaks (Jenks), 5 classes) they 
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cannot be compared directly. However, the variability of the 
coloured lines is more important in fig.6. 

 
Figure 5: dij of argmin(d̅i ) (= 344m)  

 

 
 
 
 
 
 
 
 
 

Figure 6: dij of argmax(d̅i ) (=608m) 

 

 
The same representation can be performed with the 

sinuosity index δij. As previously, we choose to display all δij 
from the two locations i solutions of the problems argmin(δ̅i) 
(fig.7) and argmax(δ̅i) (fig.8). Note that argmin(d̅i) ≠ 
argmin(δ̅i) and argmax(d̅i) ≠ argmax(δ̅i). The two patterns 
show that δij values are grouped in different directions. 
argmax(δ̅i) is the deepest dead-end of the district and its δij 
values point toward its only exit to the rest of the 
neighborhood. The south can only be accessed after walking 
through sinuous paths. argmin(δ̅i) is located at the entrance of 
the district. The pattern indicates that the buildings of the 
upper part can be accessed through almost straight lines. The 
south is accessible through a more sinuous path (like a “S”) 
that generates higher values of δij. The concentric circles have 
a radius of 100 and 200 meters. They can provide a quick 
visual interpretation of δ̅i, especially when the network of the 
study area has only one or two main roads and few shortcuts. 
In fig.7, the first 100m are reached almost in straight lines 
(main streets drawn as purple lines) which is not the case in 
fig.8. Within a range of 200m, the shape of the main streets is 
pretty different. In fig.8, we can notice that most of the main 
streets remain within this range. Walking in such a network 
means that the shortest path distance will increase while the 
Euclidean distance remains the same or even decreases. 
Therefore the value of δ̅i increases. 

 

Figure 7: δij of argmin(δ̅i )(= 0.27) 

 

Figure 8: δij of argmax(δ̅i )(=3.2) 

 

3.1.2 d̅i(Zk)  and δ̅i(Zk) 

The lower part of the district contains almost all the highest 
values (in black) of d̅i (fig.9) and δi̅ (fig.10). Such a 
configuration tends to confirm a lack of connectivity between 
the lower and the upper part of the district. The lower ones of 
d̅i are distributed along a street. We can consider this street as 
being central because, for many buildings, it constitutes the 
only way to access the others address points. Note that the 
mapping of δ̅i (fig.10) detects dead-ends or clusters of points 
that cannot straightforwardly access bigger clusters. 

 
Figure 9: d̅i of “Montoie” 
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Figure 10: δ̅i of Montoie

 

3.1.3 d̅(Zk) and δ̅(Zk) 

Let us now examine the distribution of the within-distances 
d̅(Zk) (fig.11) and “within-sinuosities” δ̅(Zk) (fig.12) across 
the districts k=1,…81.. Those quantities are sensitive to the 
morphology and to the size of the district. 

Low d̅(Zk) values means that the buidings within a district 
are better connected than the ones located in districts with 
high d̅(Zk) values. In fig.11, we can see that the lowest values 
are mainly located along the city border. The centre and the 
southern part of the city have low value while they tend to be 
similar in the eastern part of the city. The district’s shape of 
the west are more elongated and have pretty different values 
of d̅(Zk). 

 
Figure 11: d̅(Zk)  

 
In fig.12, the low values of δ̅(Zk) correspond to districts 

where buildings tend to be linked together as straight lines. 
On the other hand, high values of δ̅(Zk) betray a more sinuous 
network identifying possible candidates for the construction of 
new pedestrian shortcuts. Note that we have chosen to 
illustrate the district of “Montoie” as it has high values of 
d̅(Zk) and δ̅(Zk). 

Figure 12: δ̅(Zk) 

 

3.2 Scatterplots of dij(Zk) and δij(Zk) 

For all the districts, the scatterplots of δij and Dij show similar 
patterns: values of δij decreases quickly as Dij increases 
(fig.13). 

Figure 13: δij and Dij of “Rue Centrale” (Z27) 

 

Scatterplots of Dij and dij (further referred to as “SDd”) 
return various and interesting patterns. The pattern would 
show linearity if dij ≈ Dij, meaning that the buildings are well 
connected. On the other hand, a more important scattering 
occurs when there is a lack of connectivity in the district, 
creating non-linear pattern. For a better visualization, two red 
lines representing dij = Dij and dij = 2Dij have been added on 
each scatterplot.  

In our dataset of 81 districts, we can say that about 50% of 
the SDd show a “clean” linear pattern as shown in fig.14. 
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Figure 14: SDd and network of “Rue Centrale” (Z27) 

 
 

 
 
 
 
 
 
 
 

 
 
For this specific case, a linear regression has been computed 

obtaining the expected values (in meters): dij
* = 1.17Dij + 

46.3. This means that pedestrian shortest-path distance 
between (far enough) different locations are on average a 
multiple of their Euclidean distance, with coefficient 1.17. 
(r2=.96 , n=194’040 pairs of points, p=0.000). 

A “horn” can appear over a main linear pattern (fig.15). 
This pattern is often created by an isolated point of the 
network. The points within the selected area correspond to the 
distances (Dij and dij) between pairs of buildings but all 
originated from the same point (fig.15 bottom). 

 
Figure 15: “horn” pattern in “Bellevaux” (Z54) 

 

 
 

 
 
 

 
 

3.3 Detecting potential shortcuts “areas” 

More diffuse or non-linear patterns require deeper analysis.   
This can be illustrated through the case of the “Plaisance” 
district (fig.16). 

 
Figure 16: non-linear pattern of “Plaisance” (Z39) 

 

As the graphs are interactive in ArcMAP, it is possible to 
select points of the scatterplot to show their corresponding 
geographic features on the map. In our case, one point 
corresponds to a line linking two buildings.  For example, the 
points that are inside the selected area “S1” of fig.16 involve 
links between buildings located in the southwest of the district 
(fig.17 left), while “S2” concerns links between buildings 
located in the south and in the northeast (fig.17 right). These 
“areas” are good candidates for new pedestrian shortcuts. 
 

Figure 17: Possible locations for new shortcut(s) (Z39)  

 
 
 
 
 
 
 
 
 
 
All the SDd showing an important dispersion denotes a lack 

of connectivity between buildings. The most interesting cases 
are the ones having low value of Dij and high value of dij. 
Please note that this lack of connectivity can relate the actual 
situation, but can also result from topological errors of the 
network (i.e. an existing path that hasn’t been drawn in the 
GIS).  This means that this scatterplot analysis can help in 
determining shortcuts locations, as well as detecting major 
network topological errors. 

 

3.4 Creating shortcuts 

Based on the previous analysis of the district of “Montoie”, 
we have created 3 small shortcuts linking the lower and upper 
part of the district (fig.18).  
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Figure 18: new shortcuts in “Montoie” 

 

The impact of the shortcuts on the network connectivity can 
easily be noticed by comparing the SDd without (fig.19 left) 
and with (fig.19 right) shortcuts. In the first case, the “V” 
pattern confirms the poor network connectivity. With the 
shortcuts this “V” pattern is collapsed (fig.19 right): many 
points are grouped under the dij = 2Dij line. Numerically, the 
shortcuts lower the value of d̅(Z5) from 442m to 360m (-
22.7%) and  δ̅(Z5) from 1.39 to 0.9 (-54%).  

 
Figure 19: SDd of “Montoie” with and without shortcuts 

 
 
 
 
 
 
 
 
 
 

3.5 Connection between two districts 

The same analysis can be used to evaluate the connectivity 
between two adjacent districts Zk and Z’k. The distances Dij 
and dij are calculated with i∈ Zk and j∈ Z’k . Fig.20 (left) and 
fig.21 (left) illustrate two pairs of districts. In the first one, Z68 
and Z78 are linked together through multiple paths. In the 
second one, Z10 and Z77 are separated by railways that limit 
the number of connections between them. The resulting SDd 
confirm that first case has a good connectivity (linear pattern) 
while the diffuse pattern of the second case betray a bad 
connectivity between Z10 and Z77. A deeper analysis of this 
SDd, the computation and the mapping of d̅i and δ̅i would 
help in identifying new shortcut(s) location(s). 

 
Figure 20: network of Z68 ∪ Z78  and corresponding SDd 

Figure 21: network of Z10 ∪	Z77 and corresponding SDd 

 

4 Conclusion and work in progress 

We believe that the exposed method can help in evaluating 
and improving an existing or a planned new pedestrian 
network, as well as detecting major topological network 
errors. The scatterplot approach can provide a pertinent 
overview of the network connectivity and can also suggest 
possible locations for new shortcuts.  

Also we would like to improve our analyses by going 
beyond the current official districts. This can be done by 
aggregating the districts together, or by creating an area 
around the investigated location. Numerical optimization will 
have to be performed to overcome the problem of demanding 
computing time requirement, and of dealing with large 
matrices dij which can be reduced to a triangular form by 
symmetry. Our analyses are based on the building dataset (A), 
but same indexes can be computed using all (Vf) or subsets of 
network nodes. Weighted versions of the indexes are possible, 
for example by using the number of inhabitants living in each 
building as weight. 
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