
1 Introduction 

Three dimensional urban models intend to describe 

geometrically and semantically urban objects like buildings, 

trees, city furniture, streets and other typical urban items. 

They allow not only a dynamic visualization of a realistic 

urban environment but also to conduct 3D spatial analysis not 

feasible in 2D, for example when studying phenomena that 

have a three dimensional dispersion such as noise and flood 

prediction models. The level of detail of such urban models 

can vary according to the objectives they are built for. For a 

digital detailed geometric description of buildings several 

modelling techniques can be used such as photogrammetry, 

laser scanning and CAD 3D modelling tools. Texture 

mapping operations can provide a realistic look to the models 

when this is relevant for the actual application.  

   The surface upon which the building models lie in a 3D 

urban model should describe the local relief with a level of 

detail similar of that used for representing the objects. 

The automated generation of relief models has been 

explored by several new technologies where airborne LiDAR 

scanning assumes an important role and is still a topical area 

of research.  

Deriving a digital terrain model (DTM) from dense LiDAR 

data, especially for large-scale applications, requires 

procedures for automatic removal of objects covering the 

ground surface. Automatic classification of LiDAR clouds 

into ground and non-ground points has been tested by several 

different filter algorithms [8]. Methods based on adapted 

interpolators [2, 5], local slope detectors [10, 11] and 

mathematical morphological operators [4, 9] are the most 

popular approaches. Most algorithms have been successfully 

applied in cities where the ground surface doesn’t show 

sudden height changes.  

The object of this study was to investigate a methodology 

capable of reconstructing the DTM from LiDAR data of a city 

with high spatial variability on slope gradient of topographic 

forms. The obtained terrain surface should be compatible with 

modeled 3D buildings rather than ignoring their existence, 

replacing buildings footprint locations by horizontal terraces 

with an adequate height. The developed methodology is based 

on the analysis of local indicators of spatial association 

(LISA) [1, 3]. The Local Moran statistic (I) is applied on this 

study to assess the significant spatial clustering of similar 

values around an individual location. In order to investigate 

this, differences between a generated rough surface, following 

the local terrain tendency, and the original Digital Surface 

Model (DSM) are evaluated in terms of spatial association. 

Mapping this measure allows the identification of local 

clusters of hot and cold spots as well as spatial outliers of the 

corresponding residuals. Results show that hot spots (similar 

spatial trends of high values) are mostly related with non-

ground objects whereas cold spots (similar spatial trends of 

low values) are related with ground points. In hilly regions 

this separation is not so clear, so that additional considerations 

on the behavior of trend surfaces have to be taken into account 

as explained in 2.2. The methodology here proposed is tested 

on several LiDAR data sets from Lisbon. Figure 1 shows two 

examples of the tested urban areas: region 1 (R1) presents 

smooth slope terrain, high buildings and large streets (recent 

town area); region 2 (R2) presents very steep slopes, high 

building density and narrow streets (old town area).  

 

 

2 Methodology 

The data sets used in the project are extracted from a LiDAR 

DSM, provided by LOGICA, covering a significant part of the 

built area of Lisbon (39 km2) (Figure 1). In the origin of the 

DSM was a LiDAR coverage made 2006, where elevation and 

intensity of the first and last returns were recorded for each 

laser pulse with a TopoSys II airborne LiDAR scanner (83 

kHz pulse rate). The equipment was flown on a helicopter and 

the density of the original sample was 20 points per m2. The 
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data were resampled to a 1m x 1m raster and present a 

documented horizontal accuracy of 0.5 m and a vertical 

accuracy of 0.15 m [7].  

 

Figure 1:  LiDAR  DSM, Lisbon with test regions 1 and 2.  

 

 
 

 

Because of computing and software limitations, the original 

LiDAR DSM has been arranged as a collection of tiles of 500 

per 500 meters, where sets may overlap (Figure 2). For the 

entire study region a coarse DTM derived from an 

independent source was also calculated. The variance of the 

altitude is then determined in the region covered by each tile 

in the coarse DTM and the terrain relief is classified in two 

categories: flat (variance < 5m) and hilly (variance > 5m). 

This evaluation depends on the dimension of the subsets and 

on the local terrain characteristics. After this preliminary 

evaluation, the methodology is differentiated for each kind of 

terrain.  

 

Figure 2:  Flowchart depicting the methodology used on pre-

processing step. 

 
 

 

2.1  Flat terrain 

The region 1 of our study corresponds to the campus of the 

Faculty of Sciences (FCUL). This is a typical urban area 

containing several teaching and research buildings, a museum 

and part of the tree canopy of Campo Grande and the 

museums garden with some very high trees. Figure 3 shows 

the applied methodology.  

 

Figure 3:  Flowchart depicting the methodology used for 

Region 1 (R1) corresponding to flat terrain. 

 

 
 

The first step on the DTM calculation was to produce a rough 

terrain surface (RTS) applying a moving average to the data 

points with a neighborhood of 100 x 100 cells, which 

represents the local elevation tendencies. This new surface is 

smoother than the original raster DSM and corresponds 

locally to an average height between ground and non-ground 

points. The residuals (RES) obtained by subtracting this new 

surface from the DSM grid are mostly negative for ground 

points and positive for non-ground points (Figure 4).  

 

Figure 4: Original DSM (in shades of orange) overlaid with 

rough terrain surface (in gray) of test Region 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the second step of our procedure, those residuals are 

evaluated in terms of local spatial association. A local 

indicator of spatial autocorrelation (LISA) is computed for 
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each residual grid point in order to classify how strong the 

spatial association is between the point and its neighbors. 

   The extent of significant spatial clustering of similar values 

(hot or cold spots) around an observation identifies stationary 

regions while non-stationarity is demonstrated by spatial 

heterogeneity. For this purpose, the Local Moran statistic Ii is 

applied [1]: 

                )(
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where Z  is the mean intensity over all observations, Zi and Zj  

are the intensities of observations i and j, respectively (where 

ji ),  S2 is the variance over all observations, and Wij is a 

distance weight for the interaction between observations i and 

j. Figure 5 (left side) shows the location of grid points 

classified according to the type of spatial autocorrelation. The 

high-high (red) and low-low (blue) suggest clustering of 

similar values indicating locations of positive autocorrelation, 

whereas, the high-low (pink) and low-high (light blue) 

locations indicate spatial heterogeneity or negative 

autocorrelation. Locations with significant local Moran 

statistics are represented in Figure 5 (right side) in different 

shades of green (the corresponding p values of significance 

are given in the legend), while areas of non-significant Moran 

Ii  are represented by white points. 

 

Figure 5: LISA (left) and Moran significance (right) maps of 

Region 1 (R1). 

 

 

 

 

     

 

   

 

 

 

 

 

Since non ground points are well discriminated by the 

significant high-high clusters, these were used to generate a 

raster binary mask in the third step of our approach. The grid 

values of this mask are set to 0 on high-high points and to 1 

on any other points. Afterwards, the product of the original 

LiDAR DSM and the raster produced mask is calculated (DT 

surface on Figure 3). This way the remaining points were 

considered ground points on this new surface and kept their 

LiDAR elevation values. The removed grid points, assigned 

with zeros, represent mostly non-ground points and were on 

this step considered artificial sinks. Using this methodology, 

about 83% of non-ground points were detected correctly 

comparing to cartography. 

 

Finally, filling only the artificial sinks with the height of the 

lowest boundary cell of each sink consisted on the almost last 

procedure of the methodology here presented. Because the 

remaining non-ground points were sparse, a minimum spatial 

filter with an adequate kernel size can produce suitable 

results. Following this approach, the DTM obtained for our 

geographic region 1 is represented on Figure 6.  

Figure 6: DTM produced for Region 1. 

 

 

 

 

 

 

 

 

 

 

 

For large scale applications it is often relevant to have quite 

detailed building models. Structures on the roof could 

possibly be obtained from high density airborne LiDAR data, 

but details of vertical facades can’t be modeled from such 

data. Therefore, 3D buildings were interactively generated 

using the modeling software from Google, Google SketchUp 

8 (SU) (Figure 7). The extrusion of the buildings resulted 

from the combination of the building footprints, obtained by 

photogrammetry, and the height information measured in 

stereo models. All the other components, such as doors, 

windows and balconies, were added based on photographs of 

the site and images from Bing’s “Bird’s Eye View” taking 

advantage of the ability of the SU software to juxtapose 

photographs as textures to the 3D surfaces and model from 

there.  

 

Figure 7: Buildings model of the Campus of FCUL 

 

 
 

The integration of the 3D building models with the 

generated DTM (Figure 8) was then a simple procedure, since 

the georeference was common and the buildings were 

modeled ground up, meaning that no underground floors were 

considered in the modeling.  

 

Figure 8: 3D model of FCUL Campus with generated DTM. 
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Attending to the purpose of the urban model to be used in 

solar radiation potential studies, this representation was found 

suitable. 

 

2.2 Hilly terrain 

The above described method can be successfully applied to 

extract flat terrain from the LiDAR DSM, but it doesn’t work 

well in hilly terrain, since hills and buildings behave similar in 

terms of spatial autocorrelation of the residuals to a trend 

surface.  

Considering the relief of region 2, one of the critical zones 

of the DSM with steep slopes and buildings both on the valley 

and on the top of the hill, another approach was followed. 

Figure 9 shows the applied methodology.  

 

Figure 9: Flowchart depicting the methodology used for 

Region 2 (R2) corresponding to hilly terrain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Four trend surfaces were calculated using a moving average 

with different neighborhood radius. As the radius gets smaller 

the trend surfaces become less smooth, as exemplified on the 

profiles in Figure 10: 100 (green), 50 (blue), 25 (red) and 10 

cells (yellow). Also the residuals from the trend surfaces to 

the original DSM become smaller in the hills than in the 

buildings. For each trend surface, these residuals were 

evaluated in terms of local spatial autocorrelation generating 

four different LISA maps similar to those shown in Figure 5.  

 

 

 

Figure 10: Trend surfaces profiles (above) and profile location 

(below). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Significant clusters of high residuals detected by the LISA 

simultaneously on all trend surfaces should indicate non 

ground points to be removed from the DSM, but due to the 

relief heterogeneity and built density, a relevant portion of 

non ground points can’t be detected at this stage. An iteration 

is needed. Those points are going to be part of a final mask to 

be completed in further steps. On the other hand they are also 

removed from the DSM in this step, resulting in a surface with 

holes which were filled with interpolated heights of their 

boundary. This way, a second approximate elevation surface 

DT2 is generated where the higher non ground points are 

absent but some lower non ground points still exist (Figure 

11).  

 

Figure 11: Orthophoto (above) and mask (below) with 

classified non ground points after two iterations (blue 1st and 

green 2nd iteration). 
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A new trend surface is generated from the surface DT2 with 

a moving average in a 25 cells neighborhood. This 

neighborhoods dimension adapts the better to the ground and 

is not so influenced by the buildings as smaller radius (see 

Figure 10). The residuals to DT2 are once again analyzed with 

LISA in order to detect new high-high point clusters. The 

points in the clusters are added to the final mask. The process 

is iterated until there is no significant clustering of residuals 

meaning that the residuals are randomly located in space. This 

can be tested by a global indicator of spatial autocorrelation 

(e.g. Global Moran’s I). Values of Global Moran ranges from 

−1 (indicating perfect dispersion) to +1 (perfect correlation). 

Values near zero indicate a random spatial pattern.  

Finally, the last calculated mask is then applied to the 

original LiDAR DSM removing non ground points and, like 

in 2.1, the generated holes are considered artificial sinks being 

consequently filled with the height of the lowest boundary cell 

of each sink (Figure 12). 

 

Figure 12: DTM of region 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Results 

This study presents a new methodology for generating a DTM 

based on evaluation of the local spatial autocorrelation of 

terrain surface differences. Starting from a dense DSM of a 

complex cityscape and steep terrain, this approach removes 

iteratively non ground objects approximating the data to 

terrain topography. 

Moreover, classified ground points preserve the original 

LiDAR DSM height information. The areas classified as non-

ground can be either filled or interpolated depending on the 

application requirements. Filling those areas with an 

appropriate constant value in order to create horizontal 

terraces, allows a suitable integration with 3D building 

models.  

The resulting DTM is as detailed as required for most urban 

studies. 

Nevertheless, some disadvantages have to be pointed out: 

- the high density of the LiDAR DSM limits the process 

in terms of calculation time and area dimensions; 

- the iterative and neighbourhood focused nature of the 

methodology is very expensive in terms of computing 

resources; 

- the success of the methodology still relies too much on 

interactive judgement. 

The methodology is being tested in other areas in order to 

be improved in terms of effectiveness and degree of 

automatism.    
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