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ABSTRACT 
 

A seamless construction, coupling and modification of model components is important for the 

development and assessment of integrated models. However, present software frameworks are either 

tailored to component construction or to component coupling, whereas a consolidated environment is 

desired. The frameworks also require profound knowledge in system programming languages, and 

offer limited generic support for model assessment. 

 

We present a software framework for a straightforward construction, coupling, execution and 

analysis of model components. In this paper, we focus on the treatment of temporal dependencies 

between components of fixed and variable time step lengths as well as components with confined 

lifetime. By utilising the high-level scripting language Python, non-software developers are able to 

conduct exploratory model construction and analysis. 

 

 

INTRODUCTION 

 

Assembling multiple interacting model components of various domains such as environmental, 

social and economic systems is known as integrated modelling (Argent, 2004: Hinkel, 2009). The 

purpose of these integrated models is to obtain a holistic understanding of the behaviour of complex 

systems not only because of scientific interest (e.g., Liu et al., 2002: Rotmans, 1990: Villa and 

Costanza, 2000: Voinov et al., 2004), but also driven by policy and management (e.g., Jakeman and 

Letcher, 2003: Letcher et al., 2007: Parker et al., 2002: Rivington et al., 2007: Engelen, 2004: de Kok 

et al., 2010). Given that the incorporation of model components from several disciplines and their 

interaction increases the complexity of models, the use of modular components to assemble integrated 

models increases the maintainability and can streamline the model construction process. Proper 

modularisation is reached by the construction of components with well defined input and output 

interfaces and hidden process implementation. 

 

The concept of modularisation and reuse is ubiquitous in the software engineering domain (e.g., 

Szyperski, 2002: Booch et al., 2007: Gamma et al., 1995) and influenced the development of software 

frameworks that support the development of environmental models (Rizzoli et al., 2008: Bian, 2007: 

Donatelli and Rizzoli, 2008). Existing software frameworks are for example ESMF (Collins et al., 

2005), MapScript (Pullar, 2003), Tarsier (Watson and Rahman, 2004), PCRaster (Wesseling et al., 

1996) or E2 (Argent et al., 2009). Each of these frameworks provide library functions for easier 

construction, execution and visualisation of field-based models. Repast (North et al., 2006) or 

NetLogo (Sklar, 2007) are frameworks providing such a functionality for agent-based models. 

Contrary to the construction of model components, the Typed Data Transfer (Hinkel, 2009) provides 

library functions for the exchange of data between components; and the Open Modelling Interface 

(OpenMI, Gregersen et al., 2007) provides a standardised interface to describe and transfer data 

between existing components. 

 

Coupled models consist of various components, often with different spatial and temporal 

properties. The spatial discretisation can differ between components, as for example the coupling of a 

catchment component with ha resolution to a catchment component with km resolution. Also, 

components can hold different temporal resolutions, such as fixed time step lengths of one day for a 

component providing recharge data. In addition, modelling situations can occur with a varying time 

step, such as in a component describing the seasonal growth of crop with a short time step in the 

growth period, and a larger one in the fallow time. Moreover, components with undetermined start 

and end times are common use cases. Examples are an avalanche component triggered at a specific 

snow load, or components modelling individuals such as moving animals. A coupled model therefore 



AGILE 2011, April 18-22: Oliver Schmitz, Derek Karssenberg, Kor de Jong, Jean-Luc de Kok 

 

2 

 

will result in a complex meshwork of spatial and temporal dependencies, including intermediate 

adapter steps for spatial data conversion and temporal aggregation. However, applying the different 

existing software frameworks for the construction and coupling of components is not straightforward. 

 

The aim of this study is to develop a software framework for the construction of components, 

their coupling as well as the assessment of components and coupled models as a whole. Therefore, we 

define the following questions:  

• How can the temporal dependencies be derived between model components that exchange 

data, and how can these be represented by an ordered execution scheme? 

• How can the model developer construct and schedule components without making use of 

system programming languages? 

 

First, we define the requirements for model components and scheduling schemes with the help of 

common modelling scenarios. From these requirements we derive the execution schemes that need to 

be implemented within the scheduler. After the description of the software prototype, we outline 

remaining issues and further directions in this research. 

 

 

MODELLING SITUATIONS AND IMPLICATIONS FOR THE SCHEDULING OF 

COUPLED COMPONENTS 

 
In this section, we derive the requirements for the scheduling schemes and the model components 

based on examples of coupling scenarios with different temporal discretisations. First, we outline the 

scenario of coupling components with fixed time steps. After that, components with variable time 

steps are described. Finally, the incorporation of components with an undetermined start and end time 

is described. 

 

Fixed time steps for all components 
 

First, we consider a situation in which all components in the model have a time step that is known 

at the model development stage and fixed during the model execution. In addition to different time 

steps, several component interactions can occur in a coupled model. Components may not interact at 

all, interact in one direction, or interact bidirectional. Each situation brings along different 

requirements in terms of the data exchange between the components. 
 

 
 

Figure 1 shows the case of a bidirectional coupling between a component C1 calculating a process 

such as soil water percolation and a component C2 calculating for example groundwater flow. Here, 

the component C1 calculates with a fixed daily time step whereas C2 calculates with a fixed time step 

of one month. As a consequence, data between these components should be exchanged every month. 

 
Figure 1: Temporal control flow between interacting components with shorter (C1) and longer 

(C2) time steps. The circles represent the state of the component at each time step, for example the 

amount of percolation or seepage. The bars represent the transition from time step tn to tn+1, that is 

the calculation of the processes described within that component. The component request the 

most recent data available. While C1 directly accepts the input of C2, C2 expects aggregated 

values such as monthly mean values from C1, provided by adapter A. Note that data conversion 

issues is not explicitly included in the graph. 
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Because of the shorter time step of the soil water percolation component C1, the latest value is not 

representative for use in C2. Therefore, an aggregated value needs to be calculated before it can be 

passed to C2, which is done by an adapter. While most modelling situations also require an adapter in 

the opposite direction, we here simplify by C1 directly accepting the latest seepage values from C2. 

 

In general, the order of component execution is arbitrary as long as the dependencies are met at 

the data exchange moments. The scheduling could be as follows. From its initial state, C2 obtains data 

from C1 and propagates to its new state in t1
(2). As C2 expects new input data to proceed to its next 

time step that is not yet available, C2 exports its current state and waits until the adapter A can provide 

the aggregated values of C1. 

 

From its initial state, C1 obtains data from C2 and processes forward by calculating the transition 

function and proceeding into the state at time step t1
(1). As the data exchange moment with C2 is not 

yet reached, C1 can proceed further by reusing the initial value of C2 until the data exchange moment. 

In addition, the states of each time step need to be stored in order to process them in the adapter. C1 

can continue after the data exchange moment because C2 already can provide recent data of its latest 

time step. C2 can proceed to its next state in t2
(2) as soon as all values from C1 are available for and 

processed by the adapter. 

 

To determine a proper order of component execution and data exchange moments the scheduler 

needs to obtain information from all coupled components in the model. All process components need 

to be registered with the start and end time as well as the time step duration. This information is used 

to build up a shared timeline of all components. Furthermore, the interaction between components 

needs to be expressed, i.e. which components exchange data. From this specification, the 

synchronisation moments between the components can be derived. In case of aggregated values over 

time or data conversion, adapter need to be declared. The scheduler also determines components that 

do not exchange data until a synchronization moment. These components can proceed independently 

of each other in those periods between the data exchange. Therefore, they can be executed 

concurrently in order to increase the model performance.  

 

For the components in this scenario, components need to be specified with a fixed time step. This 

information is required for the scheduler in order to optimise the scheduling. In case the modeller 

wants to minimise initialising and suspending of components each time step, the component must be 

implemented in a way that the component can proceed a single time step like C2 or an interval of time 

steps like C1. However, if a component proceeds via a series of time steps, it is still necessary to store 

the states of each time step in order to give other components access to the state values within this 

series. 

 

 
 

Incorporating components with variable time step 

 
While a fixed time step is used in most models, not all situations are covered with the scheduling 

approach outlined in the previous section. We will now consider components with variable time steps. 

Modelling situations like this can occur for example when coupling an economic component with 

quarterly time step to an agricultural component modelling plant growth with low granularity in the 

summer season and higher in the winter. Variations in time steps can occur in two ways: known 

before model execution, or known during runtime. 

 
Figure 2: Temporal control flow between interacting components where component C2 changes 

the time step lengths. The scheduling needs to update the interval used by the adapter and to 

notify C1 of the the advanced availability of data from C2. 
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First, we consider the case when variation in the time steps is known before the model execution. 

This situation is shown in Figure 2. In terms of component interactions this situation is identical to the 

one described in the previous section, C2 requires aggregated values from C1. C2 changes its time step 

after time step t1
(2) to a shorter duration. As a consequence, the scheduling needs to adapt the interval 

used by the adapter as well as the data exchange moment between C1 and C2. As the variation in the 

time steps of the component is known at the design stage, the scheduling of components can be 

derived before the execution of the model. Therefore, previously described approaches to optimise 

runtime series of components also apply in this case. 

 

Second, a model component can vary its time step duration during model runtime, the duration of 

the time step is determined at the start of the time step because it may depend on input data. In this 

case, it is not possible to derive an execution schedule for the total model runtime in advance. 

Therefore, it is compulsory to evaluate the scheduling of components at runtime. 

 

For the scheduler, the two situations call for a different approach to derive the schedules. For 

known time step variations, the calculation of the schedule is similar to the one described in the 

previous section, and schedule can be calculated completely before execution. 

 

For unknown time steps at runtime the calculation of the schedule can only be carried out for a 

limited time in advance. The components can be scheduled and executed until the next 

synchronisation moment, after that the next synchronisation moment is determined by one of the 

variable time step components. Until then, scheduling and execution can be applied again. This 

alternating scheme continues until the end of the simulation. 

 

For modelling situations with variable time steps, two additional types of components are 

required. One component type with variable, but known time steps before the model run. This type of 

components needs to provide a list of time steps to the scheduler instead of a fixed interval. The 

second type of component holds time steps that are variable and unknown before the model run. 

Therefore, these component types must communicate the end of the current time step to the scheduler. 

 

Incorporation of components with unknown start and end time 

 
The implications of the existence of components with flexible time steps on the prediction of the 

execution scheme was already discussed in the previous section. Next, we consider the case where 

even less knowledge about the component lifetimes is available. This situation imposes a more 

flexible scheduling scheme, but allows for less options to optimise the execution scheme. Here, we 

consider the situation in which an unknown, limited number of components can appear and disappear 

during model runtime (Figure 3). An example is a forest model where a field based groundwater 

component is coupled to a number of components representing individual trees. The trees have their 

own confined lifetime, can spawn offspring, and interact by water extraction with the groundwater 

component. Before the simulation run, the functions and parameters describing these processes are 

known. Also known is the initial population with random age values, while the variation in the 

number of trees is unknown before the model run. 

 

 

.  

 
Figure 3: Components with limited life time interact with a component with continuous time 

steps. The scheduling needs to update the interval used by the adapter and to keep track of the 

number of individual components. Also, aggregated values are used as initial values for the 

individual components. 
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To organise the scheduling of components with unknown lifetime, the scheduling needs to be 

arranged in a flexible way regarding the existing situation present in the model, that is the number of 

participating components. Therefore, the scheduler can only consider a short timeframe in advance. In 

order to achieve this, the components need to be registered at the scheduler as well as the adapter used 

to communicate with other components. The registration allows the scheduler to generate dynamic 

lists that hold the properties of those individual components. These lists are continuously updated 

regarding for modifications of current components such as end of lifetime or the appending of new 

components. With these dynamically managed lists of components, queries about components can be 

executed at model runtime. 

 

The interactive components must hold their start time, end time and time step that determine the 

temporal properties of such a model component. Furthermore, a method needs to be implemented to 

determine the action at a spawn moment such as cloning the current component type as the 

establishment of a new tree individual, or the launching of another component type instance such as 

an event-triggered avalanche component. As the number of components is unknown at runtime an 

increased effort in the communication between the components and the scheduler is required. For 

example, a tree model component calls the scheduler in order to obtain the neighbouring trees at 

specific moments in time. Also, a component needs to obtain information about the scheduler in order 

to forward this information to the spawned component allowing its self-registration at the scheduler. 

In order to spawn components at individual moments during the model run in a flexible way it is 

recommended to construct autonomous components that can be activated by and communicate with a 

central control instance. 

 

Control of communication and execution flow 
 

The organisation of component execution and data transfer between components requires 

information transfer between components about when and what information has to be transferred. The 

ordered execution of individual processes is required in other domains as well and can be found for 

example in the process scheduling of operating systems (e.g., Torrey et al., 2007) or production line 

planning executed in operations research (e.g., Koomsap et al., 2005). 

 

In OpenMI (Moore and Tindall, 2005), the inter-component communication, that is notifying one 

or more components about current status and requests for data, is done by a pull-based approach. This 

means a component requests information and thereby initiates the progress of the delivering 

component. The opposite approach is to keep a centralised instance organising the execution and 

communication of components by maintaining a shared timeline. This client-server relationship is for 

instance used in the Tarsier framework (Watson and Rahman, 2004). 

 

Here, we follow the approach of a central instance organising the execution of components by 

maintaining a shared timeline. This client-server approach offers higher flexibility in the execution 

schemes over the pull-based method such as concurrent scheduling of components. 

 

 

SCHEDULE GENERATION AND COMPONENT EXECUTION 

 
Based on the different scenarios described in the previous sections, we now present the 

framework for schedule generation, and component execution. The three layer design of the 

framework separated in coupled component description, schedule generation and component 

execution is shown in Figure 4. With this approach, we can seamlessly provide both flexible and 

optimised execution schemes within one control environment. 

The model builder describes the coupled model in layer one, the model definition layer. Here, the 

different component types, their simulation horizon, the component interactions as well as the adapter 

are specified with the help of a scripted user interface. 
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This information is passed to layer two, the schedule generation layer. Based on the component 

types the schedule generation and interaction with the schedule execution layer is determined. For 

fixed temporal situations, the schedule is derived for the total simulation time and calculated in 

advance. Afterwards, component interval simulation times can be optimised for the complete 

schedule. Thereafter, the schedule can be either written to disk or passed to the component executing 

layer. 

 

For situations with variable time steps, the schedule generation layer needs to communicate with 

the component executing layer. The scheduler will calculate an appropriate simulation time interval in 

advance, which is then forwarded to the execution layer. Afterwards, the components will be 

executed for that simulation time interval. Once all components finish that interval, the execution 

layer requests the subsequent schedule interval from the schedule generation layer. Scheduling and 

executing layer will alternate this procedure until the end of simulation time. 

 

The third layer holds the part of the framework that arranges the component execution, fed either 

with a precalculated schedule or closely interacting with the schedule generator. By separating the 

schedule generation and execution we can offer a higher degree of flexibility in the component 

execution. Close interaction of the scheduler component with the generator part allows for dynamic 

modelling schemes. Accepting precalculated schedules provides several additional execution options. 

Models can be rerun with a predefined order of component execution. The modeller can decide as 

well based for example on hardware specification or component parallelism if components in a model 

run should be executed concurrently or sequentially. Moreover, the schedule generating component 

with its default Gregorian calendar can be bypassed and the executing component can be fed with 

user made schedules. Therefore, model schemes with time horizons such as 500000 years and time 

steps of 10000 years can be executed. 

 

 

SOFTWARE IMPLEMENTATION 
 

Currently, we are developing a software prototype that implements the concepts of the scheduling 

and execution framework described in the previous section. We are using the scripting language 

Python as implementation language for component development and coupling. The Python language 

is easy to use by non-software developers, offers rich functionality for scientific computing and 

visualisation (e.g., SciPy, 2011: RPy, 2011: Karssenberg et al., 2007). Also, interoperability between 

Python and system programming languages such as Fortran or C++ is straightforward to accomplish 

(e.g., Langtangen, 2007). 

The developer of an integrated model constructs components and adapter with the help of Python 

classes analogue to the approach introduced in Karssenberg et al. (2010). Figure 5 shows a source 

code example for a component modelling the groundwater flow process. The software framework 

provides a set of base classes for process components and adapter. These classes provide generic 

functionality such as input and output methods. In addition, they state requirements that need to be 

 
Figure 4: Stages of the schedule generation and component execution. Schedules with fixed time 

steps can be optimised regarding the runtimes. With unknown time step lengths, a continuous 

interaction between scheduler and executing component is required. 
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implemented by the component developer such as the process descriptions within a time step. By 

complying to the framework classes, components can always be coupled to other components. The 

framework classes can also be utilized as a wrapper by forwarding input and output data to an 

external system, for example a command line application. 

 

 
 

These components are coupled as shown in the script of Figure 6. The components are initialised 

with start and end time as well as the time step duration, here in days. The component interface is 

described in a separate XML file holding the variable specific information such as the data type for 

each input and output data. Below the component initialisation (line 7 to 9), the addComponent and 

addAdapter calls build up the shared timeline of the coupled model. The execution order of 

components and adapter is calculated by the generateSchedule call. Finally, components and 

adapter are executed according to the schedule.  

 

 
 

 

CONCLUSION AND FUTURE WORK 
 

The scheduling framework and software prototype presented in this paper allow the construction 

of model components and their coupling in consideration of different temporal resolutions. By 

utilising a high-level scripting language for the model description we envision an easier construction 

process of integrated models for scientific research. 

 
Figure 6: Code snippet showing the implementation of the coupled model introduced in Section 

2.1. First, component and adapter with properties such as input/output interfaces and temporal 

specifications are instantiated. These are passed to the schedule generator, which determines the 

order of component execution. 

 
Figure 5: Python code snippet showing the implementation of the groundwater component. 

Generic functionality such as executing one or several time steps is derived from parent classes, 

here FixedTimestep. Process specific descriptions need to be implemented by the model 

developer. Input and output interfaces specified by the file IoInterface are used by the read 

method to obtain values from another component during a model run. 
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The framework assumes components to progress forward in time. Processes requiring close 

interaction within a time step, as for example in solving differential equations between two 

components, can therefore not be represented adequately. In the current state, the framework 

exclusively addresses single deterministic model executions, while environmental processes are 

predominantly stochastic. Therefore, further research will include the extension of the framework by 

execution schemes such as Monte Carlo (e.g., Doucet et al., 2001) and Particle Filtering (e.g., 

Moradkhani et al., 2005) in order to estimate uncertainty in coupled models.  

 

Accompanying this task, methods for extraction of component results for analysis and 

visualisation need to be enhanced. Hence, the formalised semantic description (e.g., Rizzoli et al., 

2008: Villa et al., 2009) of the software framework will be extended. As a potential result, 

interoperability with components complying to other frameworks such as OpenMI, or web-based data 

provider (e.g., Goodchild et al., 2007) can be facilitated. 
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