
Constructing integrated models:

a scheduler to execute coupled components

Oliver Schmitz

1,2
, Derek Karssenberg

1
, Kor de Jong

1
, and Jean-Luc de Kok

2

1Utrecht University, Department of Physical Geography, The Netherlands

2Flemish Institute for Technological Research (VITO), Belgium

ABSTRACT

A seamless construction, coupling and modification of model components is important for the

development and assessment of integrated models. However, present software frameworks are either

tailored to component construction or to component coupling, whereas a consolidated environment is

desired. The frameworks also require profound knowledge in system programming languages, and

offer limited generic support for model assessment.

We present a software framework for a straightforward construction, coupling, execution and

analysis of model components. In this paper, we focus on the treatment of temporal dependencies

between components of fixed and variable time step lengths as well as components with confined

lifetime. By utilising the high-level scripting language Python, non-software developers are able to

conduct exploratory model construction and analysis.

INTRODUCTION

Assembling multiple interacting model components of various domains such as environmental,

social and economic systems is known as integrated modelling (Argent, 2004: Hinkel, 2009). The

purpose of these integrated models is to obtain a holistic understanding of the behaviour of complex

systems not only because of scientific interest (e.g., Liu et al., 2002: Rotmans, 1990: Villa and

Costanza, 2000: Voinov et al., 2004), but also driven by policy and management (e.g., Jakeman and

Letcher, 2003: Letcher et al., 2007: Parker et al., 2002: Rivington et al., 2007: Engelen, 2004: de Kok

et al., 2010). Given that the incorporation of model components from several disciplines and their

interaction increases the complexity of models, the use of modular components to assemble integrated

models increases the maintainability and can streamline the model construction process. Proper

modularisation is reached by the construction of components with well defined input and output

interfaces and hidden process implementation.

The concept of modularisation and reuse is ubiquitous in the software engineering domain (e.g.,

Szyperski, 2002: Booch et al., 2007: Gamma et al., 1995) and influenced the development of software

frameworks that support the development of environmental models (Rizzoli et al., 2008: Bian, 2007:

Donatelli and Rizzoli, 2008). Existing software frameworks are for example ESMF (Collins et al.,

2005), MapScript (Pullar, 2003), Tarsier (Watson and Rahman, 2004), PCRaster (Wesseling et al.,

1996) or E2 (Argent et al., 2009). Each of these frameworks provide library functions for easier

construction, execution and visualisation of field-based models. Repast (North et al., 2006) or

NetLogo (Sklar, 2007) are frameworks providing such a functionality for agent-based models.

Contrary to the construction of model components, the Typed Data Transfer (Hinkel, 2009) provides

library functions for the exchange of data between components; and the Open Modelling Interface

(OpenMI, Gregersen et al., 2007) provides a standardised interface to describe and transfer data

between existing components.

Coupled models consist of various components, often with different spatial and temporal

properties. The spatial discretisation can differ between components, as for example the coupling of a

catchment component with ha resolution to a catchment component with km resolution. Also,

components can hold different temporal resolutions, such as fixed time step lengths of one day for a

component providing recharge data. In addition, modelling situations can occur with a varying time

step, such as in a component describing the seasonal growth of crop with a short time step in the

growth period, and a larger one in the fallow time. Moreover, components with undetermined start

and end times are common use cases. Examples are an avalanche component triggered at a specific

snow load, or components modelling individuals such as moving animals. A coupled model therefore

AGILE 2011, April 18-22: Oliver Schmitz, Derek Karssenberg, Kor de Jong, Jean-Luc de Kok

2

will result in a complex meshwork of spatial and temporal dependencies, including intermediate

adapter steps for spatial data conversion and temporal aggregation. However, applying the different

existing software frameworks for the construction and coupling of components is not straightforward.

The aim of this study is to develop a software framework for the construction of components,

their coupling as well as the assessment of components and coupled models as a whole. Therefore, we

define the following questions:

• How can the temporal dependencies be derived between model components that exchange

data, and how can these be represented by an ordered execution scheme?

• How can the model developer construct and schedule components without making use of

system programming languages?

First, we define the requirements for model components and scheduling schemes with the help of

common modelling scenarios. From these requirements we derive the execution schemes that need to

be implemented within the scheduler. After the description of the software prototype, we outline

remaining issues and further directions in this research.

MODELLING SITUATIONS AND IMPLICATIONS FOR THE SCHEDULING OF

COUPLED COMPONENTS

In this section, we derive the requirements for the scheduling schemes and the model components

based on examples of coupling scenarios with different temporal discretisations. First, we outline the

scenario of coupling components with fixed time steps. After that, components with variable time

steps are described. Finally, the incorporation of components with an undetermined start and end time

is described.

Fixed time steps for all components

First, we consider a situation in which all components in the model have a time step that is known

at the model development stage and fixed during the model execution. In addition to different time

steps, several component interactions can occur in a coupled model. Components may not interact at

all, interact in one direction, or interact bidirectional. Each situation brings along different

requirements in terms of the data exchange between the components.

Figure 1 shows the case of a bidirectional coupling between a component C1 calculating a process

such as soil water percolation and a component C2 calculating for example groundwater flow. Here,

the component C1 calculates with a fixed daily time step whereas C2 calculates with a fixed time step

of one month. As a consequence, data between these components should be exchanged every month.

Figure 1: Temporal control flow between interacting components with shorter (C1) and longer

(C2) time steps. The circles represent the state of the component at each time step, for example the

amount of percolation or seepage. The bars represent the transition from time step tn to tn+1, that is

the calculation of the processes described within that component. The component request the

most recent data available. While C1 directly accepts the input of C2, C2 expects aggregated

values such as monthly mean values from C1, provided by adapter A. Note that data conversion

issues is not explicitly included in the graph.

Constructing integrated models: a scheduler to execute coupled components

3

Because of the shorter time step of the soil water percolation component C1, the latest value is not

representative for use in C2. Therefore, an aggregated value needs to be calculated before it can be

passed to C2, which is done by an adapter. While most modelling situations also require an adapter in

the opposite direction, we here simplify by C1 directly accepting the latest seepage values from C2.

In general, the order of component execution is arbitrary as long as the dependencies are met at

the data exchange moments. The scheduling could be as follows. From its initial state, C2 obtains data

from C1 and propagates to its new state in t1
(2). As C2 expects new input data to proceed to its next

time step that is not yet available, C2 exports its current state and waits until the adapter A can provide

the aggregated values of C1.

From its initial state, C1 obtains data from C2 and processes forward by calculating the transition

function and proceeding into the state at time step t1
(1). As the data exchange moment with C2 is not

yet reached, C1 can proceed further by reusing the initial value of C2 until the data exchange moment.

In addition, the states of each time step need to be stored in order to process them in the adapter. C1

can continue after the data exchange moment because C2 already can provide recent data of its latest

time step. C2 can proceed to its next state in t2
(2) as soon as all values from C1 are available for and

processed by the adapter.

To determine a proper order of component execution and data exchange moments the scheduler

needs to obtain information from all coupled components in the model. All process components need

to be registered with the start and end time as well as the time step duration. This information is used

to build up a shared timeline of all components. Furthermore, the interaction between components

needs to be expressed, i.e. which components exchange data. From this specification, the

synchronisation moments between the components can be derived. In case of aggregated values over

time or data conversion, adapter need to be declared. The scheduler also determines components that

do not exchange data until a synchronization moment. These components can proceed independently

of each other in those periods between the data exchange. Therefore, they can be executed

concurrently in order to increase the model performance.

For the components in this scenario, components need to be specified with a fixed time step. This

information is required for the scheduler in order to optimise the scheduling. In case the modeller

wants to minimise initialising and suspending of components each time step, the component must be

implemented in a way that the component can proceed a single time step like C2 or an interval of time

steps like C1. However, if a component proceeds via a series of time steps, it is still necessary to store

the states of each time step in order to give other components access to the state values within this

series.

Incorporating components with variable time step

While a fixed time step is used in most models, not all situations are covered with the scheduling

approach outlined in the previous section. We will now consider components with variable time steps.

Modelling situations like this can occur for example when coupling an economic component with

quarterly time step to an agricultural component modelling plant growth with low granularity in the

summer season and higher in the winter. Variations in time steps can occur in two ways: known

before model execution, or known during runtime.

Figure 2: Temporal control flow between interacting components where component C2 changes

the time step lengths. The scheduling needs to update the interval used by the adapter and to

notify C1 of the the advanced availability of data from C2.

AGILE 2011, April 18-22: Oliver Schmitz, Derek Karssenberg, Kor de Jong, Jean-Luc de Kok

4

First, we consider the case when variation in the time steps is known before the model execution.

This situation is shown in Figure 2. In terms of component interactions this situation is identical to the

one described in the previous section, C2 requires aggregated values from C1. C2 changes its time step

after time step t1
(2) to a shorter duration. As a consequence, the scheduling needs to adapt the interval

used by the adapter as well as the data exchange moment between C1 and C2. As the variation in the

time steps of the component is known at the design stage, the scheduling of components can be

derived before the execution of the model. Therefore, previously described approaches to optimise

runtime series of components also apply in this case.

Second, a model component can vary its time step duration during model runtime, the duration of

the time step is determined at the start of the time step because it may depend on input data. In this

case, it is not possible to derive an execution schedule for the total model runtime in advance.

Therefore, it is compulsory to evaluate the scheduling of components at runtime.

For the scheduler, the two situations call for a different approach to derive the schedules. For

known time step variations, the calculation of the schedule is similar to the one described in the

previous section, and schedule can be calculated completely before execution.

For unknown time steps at runtime the calculation of the schedule can only be carried out for a

limited time in advance. The components can be scheduled and executed until the next

synchronisation moment, after that the next synchronisation moment is determined by one of the

variable time step components. Until then, scheduling and execution can be applied again. This

alternating scheme continues until the end of the simulation.

For modelling situations with variable time steps, two additional types of components are

required. One component type with variable, but known time steps before the model run. This type of

components needs to provide a list of time steps to the scheduler instead of a fixed interval. The

second type of component holds time steps that are variable and unknown before the model run.

Therefore, these component types must communicate the end of the current time step to the scheduler.

Incorporation of components with unknown start and end time

The implications of the existence of components with flexible time steps on the prediction of the

execution scheme was already discussed in the previous section. Next, we consider the case where

even less knowledge about the component lifetimes is available. This situation imposes a more

flexible scheduling scheme, but allows for less options to optimise the execution scheme. Here, we

consider the situation in which an unknown, limited number of components can appear and disappear

during model runtime (Figure 3). An example is a forest model where a field based groundwater

component is coupled to a number of components representing individual trees. The trees have their

own confined lifetime, can spawn offspring, and interact by water extraction with the groundwater

component. Before the simulation run, the functions and parameters describing these processes are

known. Also known is the initial population with random age values, while the variation in the

number of trees is unknown before the model run.

.

Figure 3: Components with limited life time interact with a component with continuous time

steps. The scheduling needs to update the interval used by the adapter and to keep track of the

number of individual components. Also, aggregated values are used as initial values for the

individual components.

Constructing integrated models: a scheduler to execute coupled components

5

To organise the scheduling of components with unknown lifetime, the scheduling needs to be

arranged in a flexible way regarding the existing situation present in the model, that is the number of

participating components. Therefore, the scheduler can only consider a short timeframe in advance. In

order to achieve this, the components need to be registered at the scheduler as well as the adapter used

to communicate with other components. The registration allows the scheduler to generate dynamic

lists that hold the properties of those individual components. These lists are continuously updated

regarding for modifications of current components such as end of lifetime or the appending of new

components. With these dynamically managed lists of components, queries about components can be

executed at model runtime.

The interactive components must hold their start time, end time and time step that determine the

temporal properties of such a model component. Furthermore, a method needs to be implemented to

determine the action at a spawn moment such as cloning the current component type as the

establishment of a new tree individual, or the launching of another component type instance such as

an event-triggered avalanche component. As the number of components is unknown at runtime an

increased effort in the communication between the components and the scheduler is required. For

example, a tree model component calls the scheduler in order to obtain the neighbouring trees at

specific moments in time. Also, a component needs to obtain information about the scheduler in order

to forward this information to the spawned component allowing its self-registration at the scheduler.

In order to spawn components at individual moments during the model run in a flexible way it is

recommended to construct autonomous components that can be activated by and communicate with a

central control instance.

Control of communication and execution flow

The organisation of component execution and data transfer between components requires

information transfer between components about when and what information has to be transferred. The

ordered execution of individual processes is required in other domains as well and can be found for

example in the process scheduling of operating systems (e.g., Torrey et al., 2007) or production line

planning executed in operations research (e.g., Koomsap et al., 2005).

In OpenMI (Moore and Tindall, 2005), the inter-component communication, that is notifying one

or more components about current status and requests for data, is done by a pull-based approach. This

means a component requests information and thereby initiates the progress of the delivering

component. The opposite approach is to keep a centralised instance organising the execution and

communication of components by maintaining a shared timeline. This client-server relationship is for

instance used in the Tarsier framework (Watson and Rahman, 2004).

Here, we follow the approach of a central instance organising the execution of components by

maintaining a shared timeline. This client-server approach offers higher flexibility in the execution

schemes over the pull-based method such as concurrent scheduling of components.

SCHEDULE GENERATION AND COMPONENT EXECUTION

Based on the different scenarios described in the previous sections, we now present the

framework for schedule generation, and component execution. The three layer design of the

framework separated in coupled component description, schedule generation and component

execution is shown in Figure 4. With this approach, we can seamlessly provide both flexible and

optimised execution schemes within one control environment.

The model builder describes the coupled model in layer one, the model definition layer. Here, the

different component types, their simulation horizon, the component interactions as well as the adapter

are specified with the help of a scripted user interface.

AGILE 2011, April 18-22: Oliver Schmitz, Derek Karssenberg, Kor de Jong, Jean-Luc de Kok

6

This information is passed to layer two, the schedule generation layer. Based on the component

types the schedule generation and interaction with the schedule execution layer is determined. For

fixed temporal situations, the schedule is derived for the total simulation time and calculated in

advance. Afterwards, component interval simulation times can be optimised for the complete

schedule. Thereafter, the schedule can be either written to disk or passed to the component executing

layer.

For situations with variable time steps, the schedule generation layer needs to communicate with

the component executing layer. The scheduler will calculate an appropriate simulation time interval in

advance, which is then forwarded to the execution layer. Afterwards, the components will be

executed for that simulation time interval. Once all components finish that interval, the execution

layer requests the subsequent schedule interval from the schedule generation layer. Scheduling and

executing layer will alternate this procedure until the end of simulation time.

The third layer holds the part of the framework that arranges the component execution, fed either

with a precalculated schedule or closely interacting with the schedule generator. By separating the

schedule generation and execution we can offer a higher degree of flexibility in the component

execution. Close interaction of the scheduler component with the generator part allows for dynamic

modelling schemes. Accepting precalculated schedules provides several additional execution options.

Models can be rerun with a predefined order of component execution. The modeller can decide as

well based for example on hardware specification or component parallelism if components in a model

run should be executed concurrently or sequentially. Moreover, the schedule generating component

with its default Gregorian calendar can be bypassed and the executing component can be fed with

user made schedules. Therefore, model schemes with time horizons such as 500000 years and time

steps of 10000 years can be executed.

SOFTWARE IMPLEMENTATION

Currently, we are developing a software prototype that implements the concepts of the scheduling

and execution framework described in the previous section. We are using the scripting language

Python as implementation language for component development and coupling. The Python language

is easy to use by non-software developers, offers rich functionality for scientific computing and

visualisation (e.g., SciPy, 2011: RPy, 2011: Karssenberg et al., 2007). Also, interoperability between

Python and system programming languages such as Fortran or C++ is straightforward to accomplish

(e.g., Langtangen, 2007).

The developer of an integrated model constructs components and adapter with the help of Python

classes analogue to the approach introduced in Karssenberg et al. (2010). Figure 5 shows a source

code example for a component modelling the groundwater flow process. The software framework

provides a set of base classes for process components and adapter. These classes provide generic

functionality such as input and output methods. In addition, they state requirements that need to be

Figure 4: Stages of the schedule generation and component execution. Schedules with fixed time

steps can be optimised regarding the runtimes. With unknown time step lengths, a continuous

interaction between scheduler and executing component is required.

Constructing integrated models: a scheduler to execute coupled components

7

implemented by the component developer such as the process descriptions within a time step. By

complying to the framework classes, components can always be coupled to other components. The

framework classes can also be utilized as a wrapper by forwarding input and output data to an

external system, for example a command line application.

These components are coupled as shown in the script of Figure 6. The components are initialised

with start and end time as well as the time step duration, here in days. The component interface is

described in a separate XML file holding the variable specific information such as the data type for

each input and output data. Below the component initialisation (line 7 to 9), the addComponent and

addAdapter calls build up the shared timeline of the coupled model. The execution order of

components and adapter is calculated by the generateSchedule call. Finally, components and

adapter are executed according to the schedule.

CONCLUSION AND FUTURE WORK

The scheduling framework and software prototype presented in this paper allow the construction

of model components and their coupling in consideration of different temporal resolutions. By

utilising a high-level scripting language for the model description we envision an easier construction

process of integrated models for scientific research.

Figure 6: Code snippet showing the implementation of the coupled model introduced in Section

2.1. First, component and adapter with properties such as input/output interfaces and temporal

specifications are instantiated. These are passed to the schedule generator, which determines the

order of component execution.

Figure 5: Python code snippet showing the implementation of the groundwater component.

Generic functionality such as executing one or several time steps is derived from parent classes,

here FixedTimestep. Process specific descriptions need to be implemented by the model

developer. Input and output interfaces specified by the file IoInterface are used by the read

method to obtain values from another component during a model run.

AGILE 2011, April 18-22: Oliver Schmitz, Derek Karssenberg, Kor de Jong, Jean-Luc de Kok

8

The framework assumes components to progress forward in time. Processes requiring close

interaction within a time step, as for example in solving differential equations between two

components, can therefore not be represented adequately. In the current state, the framework

exclusively addresses single deterministic model executions, while environmental processes are

predominantly stochastic. Therefore, further research will include the extension of the framework by

execution schemes such as Monte Carlo (e.g., Doucet et al., 2001) and Particle Filtering (e.g.,

Moradkhani et al., 2005) in order to estimate uncertainty in coupled models.

Accompanying this task, methods for extraction of component results for analysis and

visualisation need to be enhanced. Hence, the formalised semantic description (e.g., Rizzoli et al.,

2008: Villa et al., 2009) of the software framework will be extended. As a potential result,

interoperability with components complying to other frameworks such as OpenMI, or web-based data

provider (e.g., Goodchild et al., 2007) can be facilitated.

REFERENCES

Argent, R., Perraud, J.-M., Rahman, J., Grayson, R., Podger, G., 2009. A new approach to water

quality modelling and environmental decision support systems. Environmental Modelling &

Software 24 (7), 809–818.

Argent, R. M., 2004. An overview of model integration for environmental applications–components,

frameworks and semantics. Environmental Modelling & Software 19 (3), 219–234.

Bian, L., 2007. Object-oriented representation of environmental phenomena: Is everything best

represented as an object? Annals of the Association of American Geographers 97 (2), 267–281

.

Booch, G., Maksimchuk, R. A., Engel, M. W., Young, B. J., Conallen, J., Houston, K. A., 2007.

Object Oriented Analysis and Design with Applications. Addison Wesley.

Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V., Li, P., Yang, W., Hill, C.,

da Silva, A., 2005. Design and implementation of components in the Earth System Modeling

Framework. International Journal of High Performance Computing Applications 19 (3), 341–

350.

de Kok, J.-L., Engelen, G., Maes, J., 2010. Towards Model Component Reuse for the Design of

Simulation Models – A Case Study for ICZM. In: Swayne, D. A., Yang, W., Voinov, A. A.,

Rizzoli, A., Filatova, T. (Eds.), International Congress on Environmental Modelling and

Software Modelling for Environment’s Sake, Fifth Biennial Meeting, Ottawa, Canada.

International Environmental Modelling and Software Society (iEMSs).

Donatelli, M., Rizzoli, A., 2008. A design for framework-independent model components of

biophysical systems. In: Sànchez-Marrè, M., Béjar, J., Comas, J., Rizzoli, A., Guariso, G.

(Eds.), Integrating Sciences and Information Technology for Environmental Assessment and

Decision Making. iEMSs 2008: International Congress on Environmental Modelling and

Software, pp. 727–734.

Doucet, A., de Freitas, N., Gordon, N., 2001. Sequential Monte Carlo Methods in Practice. Statistics

for Engineering and Information Science. Springer, New York.

Engelen, G., 2004. Models in Policy Formulation and Assessment: The WadBOS Decision Support

System. In: Environmental Modelling: Finding Simplicity in Complexity. John Wiley & Sons

Ltd, pp. 257–271.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns: elements of reusable object-

oriented software. Addison Wesley.

Goodchild, M. F., Fu, P., Rich, P., 2007. Sharing Geographic Information: An Assessment of the

Geospatial One-Stop. Annals of the Association of American Geographers 97 (2), 250–266.

Constructing integrated models: a scheduler to execute coupled components

9

Gregersen, J., Gijsbers, P., Westen, S., 2007. OpenMI: Open modelling interface. Journal of

Hydroinformatics 9 (3), 175–191.

Hinkel, J., 2009. The PIAM approach to modular integrated assessment modelling. Environmental

Modelling & Software 24 (6), 739–748.

Jakeman, A., Letcher, R., 2003. Integrated assessment and modelling: features, principles and

examples for catchment management. Environmental Modelling & Software 18 (6), 491–501.

Karssenberg, D., de Jong, K., van der Kwast, J., 2007. Modelling landscape dynamics with Python.

International Journal of Geographical Information Science 21 (5), 483–495.

Karssenberg, D., Schmitz, O., Salamon, P., de Jong, K., Bierkens, M. F., 2010. A software framework

for construction of process-based stochastic spatio-temporal models and data assimilation.

Environmental Modelling & Software 25 (4), 489–502.

Koomsap, P., Shaikh, N. I., Prabhu, V. V., 2005. Integrated process control and condition-based

maintenance scheduler for distributed manufacturing control systems. International Journal of

Production Research 43 (8), 1625–1641.

Langtangen, H. P., 2007. Python Scripting for Computational Science, 3rd Edition. Springer.

Letcher, R., Croke, B., Jakeman, A., 2007. Integrated assessment modelling for water resource

allocation and management: A generalised conceptual framework. Environmental Modelling &

Software 22 (5), 733–742.

Liu, J., Peng, C., Dang, Q., Apps, M., Jiang, H., 2002. A component object model strategy for reusing

ecosystem models. Computers and Electronics in Agriculture 35 (1), 17–33.

Moore, R. V., Tindall, C. I., 2005. An overview of the open modelling interface and environment (the

OpenMI). Environmental Science & Policy 8 (3), 279–286.

Moradkhani, H., Hsu, K.-L., Gupta, H., Sorooshian, S., 2005. Uncertainty assessment of hydrologic

model states and parameters: Sequential data assimilation using the particle filter. Water

Resour. Res. 41, W05012.

North, M., Collier, N., Vos, J., 2006. Experiences Creating Three Implementations of the Repast

Agent Modeling Toolkit. ACM Transactions on Modeling and Computer Simulation 16 (1), 1–

25.

Parker, P., Letcher, R., Jakeman, A., Beck, M. B., Harris, G., Argent, R. M., Hare, M., Pahl-Wostl,

C., Voinov, A., Janssen, M., Sullivan, P., Scoccimarro, M., Friend, A., Sonnenshein, M.,

Barker, D., Matejicek, L., Odulaja, D., Deadman, P., Lim, K., Larocque, G., Tarikhi, P.,

Fletcher, C., Put, A., Maxwell, T., Charles, A., Breeze, H., Nakatani, N., Mudgal, S., Naito, W.,

Osidele, O., Eriksson, I., Kautsky, U., Kautsky, E., Naeslund, B., Kumblad, L., Park, R.,

Maltagliati, S., Girardin, P., Rizzoli, A., Mauriello, D., Hoch, R., Pelletier, D., Reilly, J.,

Olafsdottir, R., Bin, S., 2002. Progress in integrated assessment and modelling. Environmental

Modelling & Software 17 (3), 209–217.

Pullar, D., 2003. Simulation Modelling Applied To Runoff Modelling Using MapScript. Transactions

in GIS 7 (2), 267–283.

Rivington, M., Matthews, K., Bellocchi, G., Buchan, K., Stöckle, C., Donatelli, M., 2007. An

integrated assessment approach to conduct analyses of climate change impacts on whole-farm

systems. Environmental Modelling & Software 22 (2), 202–210.

Rizzoli, A. E., Donatelli, M., Athanasiadis, I. N., Villa, F., Huber, D., 2008. Semantic links in

integrated modelling frameworks. Mathematics and Computers in Simulation 78 (2-3), 412–

423.

Rotmans, J., 1990. IMAGE: an integrated model to assess the greenhouse effect. Kluwer.

AGILE 2011, April 18-22: Oliver Schmitz, Derek Karssenberg, Kor de Jong, Jean-Luc de Kok

10

RPy, 2011. Python interface to the R Programming Language. http://rpy.sourceforge.net/

SciPy, 2011. Scientific Tools for Python. http://www.scipy.org/

Sklar, E., 2007. Software review: NetLogo, a multi-agent simulation environment. Artificial Life

13 (3), 303–311.

Szyperski, C., 2002. Component Software: Beyond Object-Oriented Programming, 2nd Edition.

Addison Wesley.

Torrey, L. A., Coleman, J., Miller, B. P., 2007. A comparison of interactivity in the Linux 2.6

scheduler and an MLFQ scheduler. Software: Practice and Experience 37 (4), 347–364.

Villa, F., Athanasiadis, I. N., Rizzoli, A. E., 2009. Modelling with knowledge: A review of emerging

semantic approaches to environmental modelling. Environmental Modelling & Software 24 (5),

577–587.

Villa, F., Costanza, R., 2000. Design of multi-paradigm integrating modelling tools for ecological

research. Environmental Modelling & Software 15 (2), 169–177.

Voinov, A., Fitz, C., Boumans, R., Costanza, R., 2004. Modular ecosystem modeling. Environmental

Modelling & Software 19 (3), 285–304.

Watson, F. G. R., Rahman, J. M., 2004. Tarsier: a practical software framework for model

development, testing and deployment. Environmental Modelling & Software 19 (3), 245–260.

Wesseling, C., Karssenberg, D., van Deursen, W., Burrough, P., 1996. Integrating dynamic

environmental models in GIS: the development of a Dynamic Modelling language.

Transactions in GIS 1, 40–48.

