
Communicating Uncertainty in Spatial Decision Support 

Systems: a Case Study of Bioenergy-Crop Potentials in 

Mozambique 

 
Judith Anne Verstegen

a
, Floor van der Hilst

b
, Derek Karssenberg

a
, André Faaij

b
   

 
a Department of Physical Geography, Faculty of Geosciences, Utrecht University, The Netherlands 

b Copernicus Institute for Sustainable Development and Innovation, Utrecht University,  

The Netherlands 

 

INTRODUCTION 
 

Spatio-temporal simulation models of environmental processes have been constructed for a wide 

range of application domains, including hydrology (e.g., Gosling and Arnell, 2010), geomorphology 

(e.g., Baas, 2002; Jerolmack and Paola, 2007), atmospheric transport (e.g., Brandt et al., 2000), 

erosion (e.g., D'Ambrosio et al., 2007; Nearing et al., 2005), and land use change (e.g., Verburg and 

Overmars, 2009). These models have in common that they simulate change over time of a spatial 

phenomenon or, more likely, several spatial phenomena that interact with each other. Those dynamic 

processes and their interactions tend to be complex and are rarely fully understood. As a result errors 

are inherent in simulation models through the debatable choice and conceptualization of relevant sub-

processes, the discretization of information and the quantification of input variables and model 

parameters that are hard or even impossible to measure. These errors propagate through the model 

because the state of the modelled system at a certain moment in time is a function of its state in the 

past. This generates uncertainty in model outputs. Methods of uncertainty analysis for spatio-temporal 

models, sometimes referred to as error propagation modelling, have been discussed in a large number 

of studies (e.g., Aerts et al., 2003; Brown and Heuvelink, 2007; Eckhardt et al., 2003; Heuvelink, 

1998). 

Spatio-temporal simulation models are widely used outside scientific communities  (Manson, 

2007). Especially models constructed to assist policy making are abundant (Bradshaw and Borchers, 

2000). Such models can be grouped under the term Planning Support Systems (PSSs), or more 

generally Spatial Decision Support Systems (SDSSs) (Geertman and Stillwell, 2004). SDSSs are 

interactive, computer-based systems that include simulation models and visualization tools designed 

to assess the impact of possible decisions. Users of SDSSs demand practical models with clear and 

unambiguous results to facilitate decision making. The result of this desire for clarity and simplicity is 

that SDSSs tend to underestimate, if not ignore, uncertainty (Foody, 2003). They thus yield clear, but 

therefore sometimes deceptively precise outputs. 

Modellers are continuously improving the structure of their models and developing approaches 

for better estimation of input variables and model parameters. However, construction of completely 

error-free models is simply impossible, because models remain simplifications of open systems 

(Manson, 2007). Uncertainty thus needs to be communicated and dealt with. Therefore we claim, 

together with others (e.g., Foody, 2003; Ivanovic and Freer, 2009; Oreskes et al., 1994), that instead 

of obscuring uncertainty policy makers should be made more aware of uncertainty in SDSSs. 

Calculation and communication of model uncertainty and its distribution in space and time makes the 

model more transparent and the output more informative, which gives users a better basis for decision 

making (Bradshaw and Borchers, 2000; Geertman, 2006). As it is unlikely that the average user of an 

SDSS will be inclined or able to develop skills in handling uncertainty at a comparable level as the 

modellers themselves (Foody, 2003), modellers should aid their end users by providing intuitive and 

insightful indicators of uncertainty and straightforward tools to visualize those. Ideally, this should be 

possible without too much additional work on the modeller's side. 

A framework that offers a combined interface for spatio-temporal modelling and geospatial 

analysis is the PCRaster model construction framework (Karssenberg et al., 2010; PCRaster, 2010). 

The aim of this paper is to show how a modeller can use the PCRaster Python framework to construct 

an SDSS that integrates simulation, uncertainty analysis and visualization in order to provide policy 

makers with the means to take uncertainty into account in decision making. This is illustrated by a 

case study of bioenergy-crop potential in Mozambique. Although some studies have been conducted 

to assess the area of potentially available land for bioenergy crops in Mozambique (Batidzirai et al., 

2006; Watson, 2010), none of these studies was carried out in both a temporally dynamic and 

spatially explicit way. A land use change model is developed with the PCRaster Python framework to 

evaluate where bioenergy crops can be cultivated without endangering food production now and in 
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the near future when population and food intake per capita and thus arable land and pasture areas will 

increase. It is aimed to show that the PCRaster Python framework allows stochastic model inputs and 

produces easily understandable outputs of the resulting model uncertainty with respect to possible 

locations for bioenergy crops.  

The next section of this paper first describes the concepts and methods of the PCRaster Python 

framework and why this framework is expected to be suitable for constructing an uncertainty-

inclusive SDSS. After that it is outlined how the PCRaster Python framework is applied to construct 

the land use change model for Mozambique, functioning as an SDSS that explicitly takes input errors 

into account. The results section shows uncertainty in model output due to uncertainty in population 

growth and diet change in Mozambique between 2005 and 2030. The final section discusses the 

usability of the PCRaster Python framework to aid modellers constructing an SDSS that informs 

policy makers by explicitly indicating the quantity, location and time step of uncertainty in model 

outputs. 

 

 

METHODOLOGY 
 

Software framework 
 

A method that provides a relatively easily understandable representation of uncertainty is Monte 

Carlo simulation. The Monte Carlo method is attractive because of its general applicability and ease 

of implementation (Aerts et al., 2003). An error in an input variable or model parameter is represented 

by a probability distribution that embodies all possible values and their likelihood of occurrence. 

Monte Carlo simulation involves running the model a large number of times, each time drawing a 

realization from the input probability distribution(s). For spatial models this results in different spatial 

patterns for the different runs. With GIS these results can be compiled into one map that indicates, for 

example, the average output value or the probability on a certain state. However, functionality to 

accomplish this is not always present in software packages. Most packages are either dedicated to 

model development, e.g. Stella (Stella, 2010) and NetLogo (NetLogo, 2010), or to uncertainty 

analysis (for a package overview see Goovaerts, 2010). The developer of the SDSS sometimes does 

undertake an evaluation of uncertainty with such an external package (e.g., Brown et al., 2005; Chang 

et al., 2008) and present the results to the users, but static uncertainty information for specific model 

settings are not of much help to the end user, because uncertainty can change with different input data 

or parameter settings. Much more convenient for SDSS users (and for the modeller as well) would be 

if both the option to define probability distributions for stochastic inputs, the possibility to run a 

Monte Carlo simulation and the representation of the resulting uncertainty are integrated in the SDSS, 

so that only a single software package is needed. 

The PCRaster model construction framework (Karssenberg et al., 2010; PCRaster, 2010) 

facilitates this integration of spatio-temporal modelling and uncertainty analysis through the PCRaster 

Python library (Karssenberg et al., 2007). This library provides a large set of spatial and spatio-

temporal functions on raster maps, embedded in the Python language (Python, 2010). Both a spatio-

temporal modelling framework and a Monte Carlo analysis framework are present as a Python class. 

These classes include methods to write the simulation results and uncertainty analysis to disk as maps, 

which can be visualized with the Aguila software (Pebesma et al., 2007), included in the PCRaster 

Python distribution package. The advantage of working with the generic programming language 

Python is that other Python libraries can be embedded to support model construction and even 

complete existing models can be imported into the framework for uncertainty analyses (Karssenberg 

et al., 2010). The combination of a flexible and extendible spatio-temporal modelling framework, 

uncertainty analysis options and visualization routines makes the PCRaster Python framework 

suitable for the construction of uncertainty-inclusive SDSS. 

To allow construction of a spatio-temporal model that permits stochastic inputs and assessment of 

the resulting uncertainty three main methods are provided by the framework that together form the 

scheme in Table 1 (Karssenberg and De Jong, 2006). Firstly, it provides a method for evaluation of 

the spatio-temporal process itself (line 2). Herein, the modeller can program the equations that 

represent the change of the system state within a time step (line 3). The framework provides a number 

of functions particularly designed for spatial and stochastic operations for this purpose. Secondly, a 

loop over this spatio-temporal model is performed to generate the Monte Carlo samples (line 1), for 

which the stochastic variables and parameters differ according to their probability distribution. 

Finally, summary statistics, representing uncertainty, are computed (line 4), using all Monte Carlo 

realizations from the previous methods. 
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The individual Monte Carlo sample results and summary statistics can be written to disk with a 

function from the PCRaster Python library. This function uses rules for file names defined by the 

modelling framework. The files can directly be visualized with the Aguila software that recognizes 

these name conventions. Temporal data can be animated through time and stochastic data can be 

visualized as maps or plots by means of user defined percentile values, mean values, standard 

deviations, cumulative probability distributions, or exceedance probabilities (Karssenberg et al., 2010; 

Pebesma et al., 2007). 

 

Land use change model 
 

The potential to employ the PCRaster Python framework for an SDSS including uncertainty is 

illustrated by the construction of a land use change model of Mozambique. This model has the  

purpose to aid policy makers to evaluate where bioenergy crop plantations can be allocated. The case 

is relevant, because Mozambique is considered promising for bioenergy crop production by its vast 

amounts of available land (Smeets et al., 2004), favourable environmental conditions for cultivation 

(Batidzirai et al., 2006), and relatively low productivity of current agriculture, which offers potential 

for improvement. The population is expected to increase and its diet is expected to change as well, 

which induces shifts in land use. This information is needed by policy makers because cultivation of 

bioenergy crops should not endanger food production now or in the future. However, the various 

population growth and diet change projections differ significantly (Arndt et al., 2010; FAO, 2003; 

UNDP, 2008), so applying those drivers deterministically ignores a large input error. Our land use 

change model, or SDSS, takes this error and its resulting uncertainty into account. The model is used 

here for illustration of the possibilities of the PCRaster Python framework, so only a brief outline of 

the implemented processes is given. For a more elaborate explanation the reader is referred to van der 

Hilst et al. (forthcoming). 

The main procedure of the model is the state transition function, the spatially explicit change in 

land use. This change is steered by two factors: the demand of the population for food and wood, and 

the maximum potential yield of the land, defined by the country's technological state of art in 

agriculture. The actual location of the expansion or contraction of the land use types is determined by 

suitability factors, like distance to cities and transport networks, current land use in the 

neighbourhood and location-specific yield due to characteristics of the soil and climate. Areas not 

occupied by food production or protected land uses, like national parks, are available for bioenergy 

crops. 

  The model uses a time step (∆t) of one year; time step t = 1, 2, ..., T. Most equations are 

evaluated separately for each of the N land use types, with n = 1, 2, ..., N. Population growth and diet 

change are assumed to be the main drivers of land use change. The demand  (kg) for products of 

a land use type is: 

 

 

In Equation 1,  denotes the number of inhabitants, intake  (kg / caput) specifies the 

demand per capita of products of land use type n, and the self-sufficiency ratio (-) is the extent to 

which the food demands of the country's population are fulfilled by products from the country itself. 

Potential yield  (kg) is the possible product yield of a land use type at a certain location: 

 

     , for each n in each t (2) 

 

Note that a bold font indicates that a variable is a spatial field. In equation 2,  is the 

maximum possible product yield (kg / cell) of products from a land use type, which can increase 

through time due to technological improvements in the agricultural sector (FAO, 2003). The location-

specific variable f is the actual fraction of this yield that can be reached in a cell, depending on factors 

like soil type, climate, and water availability. 

    , for each n in each t  (1) 

1  for each MC sample: 

2    for each time step: 

3      solve system state equation 

4  compute summary statistics 

Table 1: Modelling scheme of the PCRaster Python framework 
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The total product yield of a land use type is calculated using the current land use map as follows. 

First a spatial field of the current product yield  (kg) of land use type n is constructed that 

contains the value of  for cells that are currently occupied by type n and zero for cells occupied 

by other land use types. The total product yield  (kg) of this land use type is: 

 

 

   , for each n in each t 

(3) 

 

In Equation 3, the summation sign indicates summation over the whole spatial field. To determine 

where a certain land use expands or contracts every land use type is assigned a number of suitability 

factors. The number and sort of suitability factors differ per land use type. For an overview of these 

factors, the methods to compute them and their parameters see van der Hilst et al. (forthcoming). For 

every land use type a total suitability map is computed: 

 

 

Equation 4 sums the X individual suitability factor maps  of land use type n, with weights 

 that designate their relative importance, to form suitability (-). This suitability indicates the 

total appropriateness of a given area for land use n at time step t by a value between 0 and 1. Now, all 

information is available to start the allocation procedure. The allocation schema can be written in 

pseudo-code as in Table 2. The land use types have a certain hierarchy determined mainly by their 

economic importance. The type with the highest 'rank' starts allocating. When the land use type 

expands, it allocates new cells of this type at locations with the highest suitability, i.e. 

max( , and when it contracts it removes cells of this type with the lowest suitability, i.e. 

min( . Cells are converted to or removed from this land use until the total yield  

equals the total demand . In line 7 of Table 2 the number 0 refers to the land use category 

'abandoned'. 

 

 
When allocation of the land use type with the highest rank is finished, allocation of the next type 

is performed, with the restriction that it cannot convert cells with a land use type that has already been 

allocated in that time step. After each time step, when the land use map has changed according the 

demands of the different land use types, it can be determined which cells are potentially available for 

bioenergy crops. This is done by excluding all areas occupied by crops, pasture, steep slopes, roads, 

water, cities and nature reservation areas. This results in a Boolean map  where cells are 

available (1) or unavailable (0) for bioenergy crops at time step t. The total possible crop yield of this 

area can be calculated using Equations 2 and 3. 

 

Implementation  
 

The schedule of the land use change model, implemented in the PCRaster Python framework, is 

given in Table 3. The frame of the schedule is provided by the PCRaster Python framework and 

 

   ,  for each n in each t 

(4) 

1  if  > : 

2    while  > : 

3      convert cell with max(  

to n 

4      update  

5  else if  < : 

6    while  < : 

7      convert cell with min(  

Table 2: Pseudo-code for land use allocation procedure. Allocation of each land 

use type n in each time step t proceeds until yield  fulfills demand . 
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corresponds to the scheme shown in Table 1. The PCRaster Python framework consists of four main 

methods: the premcloop (line 6 in Table 3) is evaluated only once, the initial (line 21) once for 

each realization, the dynamic (line 32) once for each time step in each realization, and the 

postmcloop (line 49) performs the uncertainty analysis. Some variables have the prefix self, as 

they are defined as member variables to allow usage over the four different methods. 

 

 

 

1 class LandUseChangeModel(DynamicModel, MonteCarloModel): 

2  def __init__(self): 

3   DynamicModel.__init__(self) 

4   MonteCarloModel.__init__(self) 

5   setclone('landuse') 

 

6  def premcloop(self): 

7   self.initialEnvironment = self.readmap('landuse') 

... 

17   self.landUseList = Parameters.getLandUseList() 

... 

 

21  def initial(self): 

22   self.environment = self.initialEnvironment 

23   self.populationStoch = mapuniform() 

24   self.landUse = LandUse(self.landUseList, self.environment) 

25   self.landUse.createLandUseTypeObjects(self.relatedTypeDict 

, self.suitFactorDict, self.weightDict, self.varDict) 

... 

 

32  def dynamic(self): 

33   timeStep = self.currentTimeStep() 

34   maxYield = timeinputscalar('maxY.tss', self.environment) 

35   demandUp = timeinputscalar('deUp.tss', self.environment) 

36   demandLow = timeinputscalar('deLow.tss', self.environment) 

37   demandDiff = (demandUp - demandLow) 

38   demand = demandDiff * self.populationStoch + demandLow 

39   self.landUse.calculateSuitabilityMaps() 

40   self.landUse.allocate(maxYield, demand) 

41   self.environment = self.landUse.getEnvironment() 

42   biofuelPotential = self.landUse.getBiofuelPotential() 

43   biofuelYield = self.landUse.getPotentialBiofuelYield() 

 44   self.report(self.environment, 'landUse') 

... 

 

49  def postmcloop(self): 

50   name = ['fuel'] 

51   sampleNumbers = self.sampleNumbers() 

52   timeSteps = self.timeSteps() 

53   mcaveragevariance(names, sampleNumbers, timeSteps) 

54   name = ['yiel'] 

55   percentiles = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] 

56   mcpercentiles(name, percentiles, sampleNumbers, timeSteps) 

 

57 nrOfTimeSteps = 26 

58 nrOfSamples = 50 

59 myModel = LandUseChangeModel() 

60 dynamicModel = DynamicFramework(myModel,nrOfTimeSteps) 

61 mcModel = MonteCarloFramework(dynamicModel, nrOfSamples) 

62 mcModel.run() 

Table 3: Main scheme of land use change model. Three dots and a 

discontinuity in the line numbering indicate omitted sections. 
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When the LandUseChangeModel is initiated it calls PCRaster Python's 

DynamicFramework (line 3) and MonteCarloFramework (line 4). Among other things, these 

frameworks allow definition of the number of time steps (line 57) and Monte Carlo samples (line 58). 

Next, the premcloop (line 6) imports input maps in lines 7 to 16. A separate file, Parameters.py, 

exhibits all non-spatial inputs. This is done to prevent that the end user has to make changes in the 

main model scheme. All its variables and parameters are imported in lines 17 to 20.  

The initial method (line 21) is used to define initial or temporally constant variables that can 

vary in the different Monte Carlo realizations. The class LandUse, defined by the model builder, is 

called here (line 24). It is used to keep track of the changing land use map. This class in its turn has a 

method to instantiate N objects of the class LandUseType (line 25) that handle the type-specific 

tasks, like computing a suitability map and allocating land. These methods are implemented with 

functions from the PCRaster Python library, including point, neighbourhood, and global operations. 

In the dynamic method (line 32), the temporal component, a time series of maximum yield 

( ) per land use type is imported (line 34). Demand is defined as a stochastic input variable by 

two time series per land use type. One includes the upper bound of the predicted population  and 

intake  (line 35), and one the lower bound (line 36) to form the range of all possible input values. 

In each Monte Carlo sample a value from a uniform distribution between 0 and 1 is drawn with the 

PCRaster Python mapuniform() function (line 23), which is used as the position between the 

upper and lower bound to determine the value (realization) for  (lines 37 and 38).  

Next, the total suitability maps are calculated for all land use types (line 39) and the allocation 

procedure, explained in Table 2, is called (line 40 in Table 3). The land use map is updated (line 41) 

and it is checked which cells are left over for bioenergy crops (line 42) and what their total potential 

yield is (line 43). Output maps are saved to disk with the PCRaster Python function 

self.report() (lines 45 to 48) that creates file extensions recognizable for the Aguila software. 

In the postcloop, the PCRaster Python function  mcaveragevariance() (line 53) 

calculates mean and variance of the file defined in line 50. The function mcpercentiles() (line 

56) computes the percentiles specified in the list in line 55. All these estimators of uncertainty are 

automatically saved to disk, so that they can be viewed with Aguila. 

 

 

RESULTS 
 

 

 

Figure 1: Screenshot of Aguila showing land use (left map) and bioenergy crop potential  

(right map), in which true is available and false is unavailable, in Mozambique of one Monte Carlo 

sample in 2012 (t = 8) and the values of the cell that is selected with the cursor (centre window).  
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A Monte Carlo run of 50 samples was carried out to determine land use change in Mozambique 

from 2005 to 2030. A raster land use map with cells of 1 x 1 km was used. Ten land use types were 

specified of which five were assigned product demands and accordingly expanded or contracted 

through time. The resulting change of land use and the area that is left for bioenergy crops in a single 

sample can be animated over time with Aguila. An example of this is given in Figure 1.  

The maps in Figure 1 are examples of what is usually the output of an SDSS. They only hold 

information of a single realization. If a bioenergy crop plantation is planned on a currently available 

spot, the availability of that location after some years can be checked with the right map in Figure 1, 

which is based on that single realization. But consequently it does not provide any information on the 

certainty of the output; in the next realization both location of availability and the total area of 

available land can be quite different. In contrast, the PCRaster Python framework allows automatic 

calculation and easy visualization of uncertainty. As a result, Figure 2 presents the probability that a 

location is still not occupied by food crops or pasture, based on averaging over all 50 realizations, so 

that future competition with those land uses can be certainly avoided or reduced to a minimum 

probability. The purple (not available) and red (available) areas are certain, but in between there is 

uncertainty in the availability of land for bio energy crops. Outputs of different realizations can also 

be viewed separately. Figure 3 shows all 50 results for the total potential yield of bioenergy crops 

(ton). As can be seen, the yield that can be reached becomes substantially more uncertain over time. 

All this extra information is obtained by addition of only a few lines of code to the land use change 

model. 

 

 
Figure 2: Screenshot of Aguila showing the probability on land availability for bioenergy crops 

in the central part of Mozambique in 2028 (time step 24) (map), and development of this probability 

through time of the cell that is selected with the cursor (graph in the lower right corner). 
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Figure 3: Screenshot of Aguila showing all 50 realizations of the total possible bioenergy crop 

yield (right window) and the corresponding yield values (ton) for 2028 (time step 24) (left window). 

 

 

DISCUSSION AND CONCLUSIONS 
 

We have shown how a modeller can use the PCRaster Python framework to construct a Spatial 

Decision Support System that integrates simulation, uncertainty analysis and visualization. This is 

considered very useful in the light that current SDSSs tend to ignore uncertainty (Foody, 2003). We 

claim that the output maps and graphs of uncertainty and its distribution in space and time provide an 

intuitive way for policy makers to take uncertainty into account in their decisions. However, in order 

to verify this claim, the policy makers themselves have to be asked for their opinions. Nevertheless, it 

is important that uncertainty in simulation models, which grow ever more complex, is somehow 

evaluated and communicated. The PCRaster Python framework facilitates this almost without any 

additional work on the modellers side, which is a major step forward in the exposure of uncertainty in 

SDSSs. 
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