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1. INTRODUCTION 

Several conceptual models and data models have been proposed for geographical phenomena with 
uncertainties that cannot easily be forced into current standard data models. These models of uncer-
tain objects can be categorized into two groups. One group (Clementini and Di Felice 1996; Cohn and 
Gotts 1996; Roy and Stell 2001) considers the broad boundary of an object as a homogeneous two-
dimensional region instead of lines. The well-known “Egg-Yolk” model which describes uncertain 
region as a pair of crisp regions, one enclosing the other, is a typical example. The other group em-
ploys probability theory or fuzzy set theory to further represent gradual changes within the broad 
boundaries. Probabilistic models for depicting the positional uncertainties of these objects have been 
developed, distinguishing between point features (Thapa and Bossler 1992), line features (Dunn et al. 
1990; Shi and Liu 2000) and polygon features (Shi and Wu 2003). Formal definitions of fuzzy re-
gions and topological relations between them are provided by (Zhan 1998; Cheng et al. 2001; 
Schneider 2003; Dilo et al. 2007). Definitions of random/uncertain data types are also developed 
(Glemser and Fritsch 1998; Pfoser and Tryfona 2001; Tøssebro and Nygård 2002) and applied in un-
certainty modeling applications (Glemser and Klein 2000). They applied probability theory directly 
on those spatial data types. However, data analysis when the data are sets, rather than points in spa-
tial-temporal space, is not a nice situation to work with (Nguyen 2006). Therefore, there is a need to 
propose a general framework for set-valued observations.  

This paper aims to implement random sets based on probability theory in a GIS environment for 
handling regions with uncertain boundaries. A random sets data model is proposed to represent uncer-
tain geographic regions and applied to spatial-temporal modeling, using a wetland monitoring case as 
an illustration. 

2. UNCERTAINTY MODELING WITH RANDOM SET 

The term random sets firstly appeared to indicate “region…depending on chance” (Kolmogoroff 
1933). After the publication of the fundamental book of random set theory by Matheron (1975), vari-
ous successful applications in spatial science appeared. Random sets are applicable and useful for 
general data fusion (Goodman et al. 1997), to address problems of determining the locations and iden-
tities of multi-targets from multi-sensor data with noise effects. Moreover, random sets are a basic 
tool in solving problems of geometrical statistics and image analysis (Molchanov 1998) and time se-
ries analysis (Nuñez-Garcia and Wolkenhauer 2002). It is the core of stochastic geometry, in which 
they are stochastic models of irregular or random geometrical structures. Stoyan (1998) applied ran-
dom set theory in particle statistics to study shape fluctuations of sand grains, showing how random 
set as a set-theoretic method has its advantages and may act as a supplement of other powerful means 
such as multivariate statistics. Nguyen (2006) pointed out that uncertainties caused by subjectivity, 
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impression and vagueness bear some relationship with random sets. More recent developments of 
random sets are provided by (Molchanov 2005; Nguyen 2006; Illian et al. 2008). In the following sec-
tions, basic concepts of random sets with respect to this research are introduced and random spatial 
data types are defined. 

2.1 Random Sets 
Sets obtained at random can be considered as kinds of random sets. For example, a probability 
sampling design is a random experiment whose outcomes cannot be predicted with certainty in 
advance, so a sample in the surveying sampling is a set obtained at random, i.e. random set. Let (Ω, 
σΩ, ΡrΩ) be a probability space and (Ξ, σΞ, Ρrx) a measure space. Every σΩ  - σΞ  measurable mapping 
v: Ω - Ξ  is called a random variable. The distribution or probability law of v is defined as Ρrv (A) = 
ΡrΩ (v-1(A)) = ΡrΩ {ω : v(ω ) ∈ A } for ∀ A ∈ σΞ. A random set can be seen as a random variable 
from Ω  to U where U is a set of subsets of Ξ , i.e. U ⊆ P( Ξ ). Let (U, σU, ΡrX) be a measurable space 
and σU is a σ - algebra defined on U, then a σΩ  - σU  mapping X: Ω → U is a random set. It is a multi-
valued mapping between the space Ω  and Ξ. Its distribution is defined as ΡrX(A ) = ΡrΩ (X-1(A )) = 
ΡrΩ {ω | X(ω ) ∈ A } for ∀ A ∈ σU. When all elements of U are singletons, then random set X 
becomes a random variable. 

On the Euclidean space Rn, a random set X associates a probability value to each element x∈Rn, 
which quantifies how likely it is that x belongs to X. The random set X on Rn is a function Px: Rn → 
[0,1]. This function is called the covering function of the random set, which takes values between 0 
and 1. The set Xa = {x ∈ Rn | Px(x) ≥ α} is called α-level set of X. The set X0 = { x ∈ Rn | Px(x) > 0 } is 
called the support set of X. The set X1 = { x ∈ Rn | Px(x) = 1 } is called the core set of X. We denote 
the set of all random sets in Rn by ℜ(Rn). 

 
A typical situation where observations are sets rather than points in a sample space can be dealt 

with random sets. When we obtain data with low quality due to imperfection of acquiring procedure 
or measuring instruments, it is more informative to represent the observations as subsets containing 
the true values than to ascribe unique values (Nguyen 2006).   

2.2 Random Spatial Data Types 
In our study we consider geo-space, i.e. the two-dimensional Euclidean space R2, with geographic 
entities as subsets of R2. Based on probability theory and random set concepts, we propose random 
objects, denoted Robject, to model geographic entities with uncertain characteristics. We model 
Robject as sets of points, homeomorphic to R2. A Robject can be either determinate or indeterminate. 
A Robject is determinate if any of its component points has an exact position that can be mapped onto 
a single point. A Robject is indeterminate, if any of its component points can only be mapped to a set 
of points, i.e., the exact position is unknown. Random unit (Ru) is defined as basic elements of R2 
constructing primary data types. A random unit (Ru), denoted as (x, y, p), consists of a pair of 
coordinates (x, y) and a probability value indicating how likely this unit located at (x, y). The 
probability value is derived from probability density function which describes the likelihood for each 
unit to be at the position. For example, uniform distribution tells us that there is an equal chance for 
each unit. 
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The random objects (Robject) is defined as: 

Robject  ≡ { Ru ∈ ℜ( R2 ) | ∃ (x, y) ∈ R2 , p(x, y) > 0} (4) 

Three primary random data types: random point (Rp), random line (Rl) and random region (Rr) are 
defined below.  

 
The random point (Rp) is defined as a random set in R2 that contains a finite collection of uncertain 

units with positive probability values, denoted as Rp (Rup1, Rup2, …, Rupn). The probability value at-
tached with each uncertain unit is the likelihood that the point is in this location. The distribution of 
all elements in a random point is described by its covering function. The uncertain points with pi > 0 
form the support set and with pi =1 form the core set. It is used for spatially modeling a point-like 
geographic entity. This point entity can be an accident place that stochastically occurred, a pair of im-
precise coordinates received by a GPS receiver, or a building that is recorded by mixed image pixels. 

 
The random line (Rl) is to model a linear object with a random component. We distinguish two 

ways in representing a random line. The first way is by a collection of uncertain lines associated with 
their probabilities, denoted as Rl {(l1, p1), (l2, p2),…, (ln, pn)}. For each component -uncertain line li, it 
is constructed by a set of uncertain units with a same probability value pi, denote as (li, pi). The 
second way is by a collection of uncertain units that constitute the line, denoted Rl (Rup1, Rup2, …, 
Rupn). The probability value attached with each uncertain unit is that the likelihood of the line goes 
through the location of this unit. The distribution of all the elements of a random line is described by 
its covering function. The elements with pi > 0 form the support set and with pi =1 form the core set. 
Random lines are used for spatially modeling a linear geographic entity, like a route from city A to 
city B, a contour line digitized from a scanned map, or a coastline interpreted from a satellite image. 

 
The random region (Rr) is a region with a random component. It can be modeled in two ways. The 

first way is by a collection of uncertain regions associated with their probabilities, denoted by Rr {(r1, 
p1), (r2, p2),…, (rn, pn)}. For each component -uncertain region ri, it is constructed by a set of uncer-
tain units with a same probability value pi, denote as (ri, pi).  The second way is by uncertain units 
which form its random coverage, denoted by Rr (Rup1, Rup2, …, Rupn). The probability value attached to 
each uncertain unit is that the likelihood of the region covers the location of this unit. The distribution 
of all the elements of a random region is described by its covering function. The areas with pi > 0 
form the support set and with pi =1 form the core set. Random regions are used for spatially modeling 
areal geographic entities, such as clouds, dunes, field patches and lakes. 

 
2.3  Estimation of the Covering Functions 
Since different specified probability measures lead to different random sets, there is a need to look at 
the distributions of random sets. In general, the question of interest is how to suggest random set 
models from empirical observations. In previous researches, there are different means of estimating 
probability distribution functions of random objects. The simplest way is to provide a set of standard 
functions such as the normal distribution and the uniform distribution. Another alternative is to adopt 
users’ definitions, which are often derived from sampled data. For example, Tøssebro and Nygård 
(2002) calculated probability of points in uncertain regions as the ratio between distance to support 
and the sum of distance to support and distance to core. However, the uncertainties often do not con-
form to normal distributions or are too complex to model by analytical approaches. In this case, we 
can adopt numerical approaches, such as Monte Carlo method, to obtain the empirical covering func-
tion of random sets, like in (Glemser and Klein 2000; Guo et al. 2008). Some researches also esti-
mated uncertainty distribution from fuzzy membership functions (Pfoser and Tryfona 2001; Van de 
Vlag and Stein 2007).    
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3. ILLUSTRATIVE EXAMPLES 

The case has its study area in the Poyang Lake national nature reserve (PLNNR) (115°55’ -
116°03’ E, 29°05’ -29°15’ N), at the southern bank of the middle reach of Yangtze River, central 
China (Figure 1). Every year, the water level starts to rise in spring (March to May) due to flooding of 
its source rivers, and keeps its highest level in summer (June to August) as a consequence of flooding 
of the Yangtze River. The water level reduces from September onwards when the flood in the 
Yangtze River ebbs to remain stable at its lowest level from December to February. Wetland vegeta-
tion submerges in summer and greens up in autumn upon the recession of the Yangtze River, provid-
ing desirable habits and high quality forage for waterfowls (Wu and Ji 2002). Mapping the wetlands, 
especially modeling the form variance of lakes is of great importance for PLNNR managers and deci-
sion makers for both ecosystem dynamic monitoring and habitat assessment.  

 

 
 
Figure 1: Location of the Poyang Lake and the PLNNR (left) and the study area in the black box 

(right). 
          

       

    
 
Figure 2: Image object of Meixihu (in black) on the middle Infrared band of nine Landsat TM images 
of 2004 (The observing time from top to bot-tom and from left to right is  5 May, 22 June, 24 July, 9 

August, 26 Sep-tember, 12 and 28 October, 29 November and 15 December) 
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Figure 2 shows a series of Landsat TM images covering the Meixihu Lake within the PLNNR, 
which were acquired from May to December of 2004 for this wetland monitoring study. A topograph-
ic map of scale 1:10000 is used as the geographic reference data. The root mean squared error 
(RMSE) of all the geometric corrections was less than 10m. To extract image objects – ‘Meixihu’ 
from a single image, the split and merge method developed in (Lucieer and Stein 2002) was adopted 
to segment images and to quantify segmentation uncertainty by using Parbat software 
(http://parbat.lucieer.net/). In this method, ranges for the splitting thresholds and merging thresholds 
are chosen and are divided into N steps. At each step, object boundaries, in the form of segment edge 
pixels, are determined. At step k these boundary pixels are assigned the value 1 and non-boundary 
pixels the value 0 and are represented on a segment-boundary image. By summing these segmenta-
tions, an image with boundary stability index (BSI) for each pixel is generated to indicate the fre-
quency of boundary location (0-1). Higher value of the index means more certainly about the boun-
dary. Objects with a low degree of geometric uncertainty will remain the same at different 
segmentation levels. Objects with uncertain boundaries will change the shape and size gradually. We 
set thresholds in split and merge segmentation approach, let Parbat software segment N times, gener-
ate a set of N pixel clusters and calculate the BSI for each image pixel. 

BSI = 
n

I
n

k
k∑

=0  (1) 

The number of segmentation steps n was set to 50 in our experiment. Boundaries in all the 50 seg-
mentation results construct a random line that models the uncertain boundary of Meixihu. An image 
with a BSI map was calculated to depict object stability which represents the random line by uncer-
tain points (figure 3a). This BSI map also indicates the empirical covering function of the random 
line. The final extracted boundaries in fig. 3b are constructed by pixels with the local maximum BSI 
values. Comparing the uncertain distribution in (figure 3a) with segmented boundaries in (figure 3b), 
we observe fewer pixels with high BSI values around the edge of the object on the left image than on 
the right image. In other words, the flooded Meixihu object has a thinner certain boundary than the 
dry Meixihu object. This result is consistent with our previous observation in figure 2 that the water 
boundary in the flooding season (June) looks less gradual than during the dry season (December). In 
this case, random set model which is constructed by multiple segmentations presents the uncertainties 
that may occur in image processing. The gradual object boundary modeled by random line can be 
used in further image analysis which may ask the inclusion of uncertainty.  

 
We now consider N image objects extracted from a time-series of N images that record the chang-

ing process of a dynamic entity. These N image objects construct a random area X for modeling its 
dynamic shape and size. Every year, the spatial extent of the lake changes with the same trend, but 
vary due to different environmental conditions, which is a typical stochastic process. In space and 
time, this Meixihu object can be considered as an object with uncertain boundaries due to its dynamic 
extents. The N image objects are considered as samples of a random set X. Pixels on each image that 
belong to one image object are assigned with value 1 and otherwise 0, then summed up and divided 
by N. This results in an image with object covering index (OCI) to indicate the frequency of object 
covering extent, i.e. covering function of the random set. Covering frequency in figure 4 can be inter-
preted as possibility which indicates the membership of the cell to the dynamic object ‘flooded re-
gion’. All cells with possibility larger than 0 were grouped to indicate the maximum extent of the 
flooded area. 

OCI = 
n

I
n

k
k∑

=0  (2) 
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(a) BSI map 

 
(b) Object boundary 

Figure 3: Meixihu area observed at June-22-2004(left) and December-15-2004(right). 
 

 
Figure 4: OCI map represent empirical covering function of random region modeling dynamic  

Meixihu Lake. 
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Random set can be described by other random variables, whose values lie in a space mathematical-
ly simpler than the space of random area. Very simple random variables assigned to random set X are 
its area A(X) and its perimeter U(X). To explore the shape changes, we also need reprehensive shape 
index, which do not change as scale changes, compactness C(X). Compactness has a maximum value 
of 1 for a circle. The change of shape and presence of irregular boundaries will decrease the value. 

2)(
)(4)(

xU
xAxC π=  (3) 

 To study the geometrical dynamic of Meixihu, several form parameters were derived and ana-
lyzed with other driving factor, i.e.water level. From the results shown in figure 5a, we can see the 
area and perimeter of Meixihu have the same change trend: the values increase rapidly from May to 
June then to around twice in July, followed by a decrease from September to December. There are 
two extreme points in the change curve of area index: the peak point in July and the second peak 
point in August. Compared with water extents in figure 2, we found that it was the topological change 
of Mixihu causes these abnormal points. The water in Meixihu was overflowed and merged with oth-
er water bodies of Poyang Lake in flooding months - July and August. Therefore, when calculating 
area and perimeter indices, newly flooded areas connected with Meixihu were regarded as parts of 
Meixihu object and counted in. Figure 5b shows the shape of the Meixihu object is most close to a 
circle in May.  

 

 
After the water level beginning to rise up, the object boundary becomes more and more irregular. 

The lowest compactness appears in September, when Meixihu was connected with a linear-shape ob-
ject (a river). After flood recession, the lake will be disconnected with other water bodies again and 
the compactness shape index is expected to return back to the high level as it in May. However, Ca-
rex-dominated grassland green up on the newly exposure wet soil around the lake, which makes the 
object shape concave and thus the index still stay low. Figure 5c shows water level of the Meixihu 
lake, which was derived from daily recorded hydrological data averaged into month unit. We can see 

  
(a) area and perimeter (b) shape index 

 
(c) water level (d) relationship of shape index and water level 

Figure 5: Changes of area, perimeter, shape index and water level of Meixihu at nine image ob-
servation time. 



12th AGILE International Conference on Geographic Information Science 2009 page 8 of 9 
Leibniz Universität Hannover, Germany 

obviously, the change curves of both area and perimeter have the same trend with the water level fluc-
tuation, while the curve of compactness shape index has inverse trend. To check the relationship of 
the water level and shape index, we found six pairs of data are quite well correlated, except the three 
extremes: the highest water level in July and August and the lowest water level in December. To justi-
fy this negative relationship between water level and shape index, more images are necessarily re-
quired.  

4. DISCUSSION AND CONCLUSIONS 

This paper proposed a random sets method to model objects with uncertain boundaries. Random 
data types: point, line and region were proposed and defined conceptually. We also illustrated ex-
amples from a wetland monitoring case, to show these random data types can be applied in image 
processing. Random set model could be used to present uncertainties of image processing operators 
and as well as dynamic variation of shape and size. One advantage of the random set model is that it 
can involve both spatial uncertain objects and spatial-temporal uncertain objects under a uniform 
framework, i.e. modeling as random point, line, and region instead of adding new time-related data 
models. 
 

The examples in section 3 are illustrative rather than detailed, and many other real world prob-
lems may involve further assumptions and complexities. As a conceptual model proposed in this pa-
per, lower level of data type definition needs to design for databases. Considering the finite repre-
sentation which can be stored in computer, continuous probability covering function needs to 
transform and approximate for each object by discrete cells, which forms a probability matrix. In 
brief, the implementation and interpretation of random sets and its applications to other real cases 
are necessary.  

 
Random sets are built by overlaying of the interpreted images in this paper, which is only a sim-

ple illustration of model construction. But the usability of the random set model is not shown direct-
ly through the examples. It is the future work after this paper that to take the benefits from random 
set models, such as Boolean model, in uncertain modeling.  
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