
11th AGILE International Conference on Geographic Information Science 2008 Page 1 of 11
University of Girona, Spain

Acquiring service oriented descriptions
of GI processing software from experts

Bénédicte Bucher, Laurence Jolivet

COGIT Laboratory, IGN, 2 avenue Pasteur, 94 165 Saint Mandé, France

INTRODUCTION

Metadata are a key item for the diffusion of geospatial processing services. Current works mainly
focus on the definition of metadata models to support geospatial processing services discovery, use
and chaining. Along with other authors, (Lemmens, 2006) argues for the definition of more detailed
metadata models than those stemming from eBusiness. The Open Geospatial Consortium (OGC) has
issued a specification for Web Processing Services (WPS, OGC, 2007 a). WPS profiles are to be
defined in the ‘Geo Processing Workflow’ (GPW) thread of the fifth OGC Web Services Initiative
(OGC, 2007 b). A complex task, besides defining metadata models and profiles, is the acquisition of
metadata. This paper focuses on this last aspect.

In the domain of metadata about data, acquisition is still a crucial issue (Craglia, 2007). We think
that the acquisition of services metadata will also present some difficulties, even if these will not be
the same. Typically, it is difficult to explicitly define all preconditions and postconditions of a service,
as well as its effects and the description of errors.

It is not too early to consider metadata acquisition even if there is no definite standard metadata
model and profiles. Indeed, information content that can be found altogether in the most famous Web
Services metadata models like WSDL, OWL-S, WSMO and cataloguing models like UDDI remain
the same.

We concentrate on involving particular categories of experts in the acquisition of information
content that will feed service metadata. Studied categories are people who develop the initial
geospatial processing software that underlies the service and people who use this initial software.
They may know better the algorithms and the relevant processes (user tasks) than people involved in
setting up Web Services architectures. This is why they can contribute in defining accurate
descriptions of geospatial processing services based on their algorithms and processes even if they are
not familiar with models like WSDL or even with the XML language. To do so, they should not have
to learn Web Service technology but they should get familiar with the information content required to
diffuse services based on their software. This work aims at assisting developers and users of
geospatial algorithms and processes in authoring ‘service-oriented descriptions’ about the algorithms
and processes. These descriptions will be further used to feed metadata for geospatial services based
on them.

We firstly detail issues related to this approach. It is especially difficult to relate experts domains
of knowledge with concepts specific to Service Oriented Architectures, like that of ‘service’. Then we
present our current proposal.

OBSTACLES ACQUIRING ‘SERVICE DESCRIPTIONS’ FROM EXPERTS

This section details obstacles we encountered when we try to let experts (developers or users)
formalize descriptive data about their algorithms and processes.

11th AGILE International Conference on Geographic Information Science 2008 Page 2 of 11
University of Girona, Spain

Relating the concept of service to experts knowledge

A first issue is to have experts understand what types of resources we want them to describe. The
Service-Oriented Architecture paradigm comes with a new model where the core resource is the
service: ‘‘an abstract resource that represents a capability of performing tasks that represents a
coherent functionality” from the point of view of a provider or a requester (W3C, 2004). Developers
of processing libraries seldom think ‘service’. They often think ‘object’ because they use an object-
oriented programming language and ‘algorithms’ if they work in a much procedural domain like
image-recognition or generalisation. Users seldom think ‘service’ either. If they use programmatic
interfaces, they are familiar with the same concepts as developers –plus packages structures-. If they
use graphical interfaces, they rather think in terms of menu items which are not always services. On a
basic GIS interface, menu items are not always services. For instance, first menu group is often called
‘File’. Developers and users may use software engineering methods, like these based on UML for
instance. In that case, they will be familiar with the notion of ‘capacity’ that is rather close to the one
of service.

Clarifying this notion of service revealed a difficult task. A small experiment was performed in
the context of a PhD work at COGIT laboratory. The PhD work aimed at designing a catalogue for
processes supported by software available within the laboratory (Abd El Kader, 2005). The
experiment consisted in asking people what questions they would like to ask to a ‘process’ search
engine (the French word we used was ‘traitement’ which means either ‘performing a task’ or ‘the
thing that performs a task’). These questions were very heterogeneous in their structure. We translate
some of them below.

Which processes have led to this specific feature instance?

What can I use to improve the graphical rendering of my map?

What are the semiologic capacities of the various GIS software available at COGIT lab?

Which operations are used in this specific application?

In which production units are used data matching algorithms?

How do I use this application?

What is the theoretical grounding behind this program?

Which GIS is the best adapted to work on risk data?

I am looking for a program that compares altitudes.

Are there some GIS that support operations jointly on network data and land occupation
data?

Are there path analysis algorithms that do not consider shortest paths and what are their
parameters?

Who has developed measures about the intrinsic orientation of an object?

Later on, brain storming meetings were organized mainly with developers to formalize the
notions of services and processes.

Eventually, the notion of service is hard to identify because it lies between software and usage.
Firstly, it is not only associated to the usages of software but also to the software: someone may
consider that the relevant task performed by a software component is to compress the data whereas
someone else will associate the same software with the relevant task ‘to filter small roads’. Does it
mean there are several services here? We think there is just one service ‘generalise roads’ and that it

11th AGILE International Conference on Geographic Information Science 2008 Page 3 of 11
University of Girona, Spain

may be associated with the goals ‘to compress data’ or ‘to change data resolutions’. Second, this
notion of service is still somehow related to usage. For example, identifying relevant services that are
provided by a software component is not a trivial task. The authors experimented this: they designed
web services based on an existing application to automatically enhance colour contrasts [Jolivet et al.
07]. This application was to be used following a given process: load data, specify styles, and so on.
Identifying, among the steps of this process, functions that may be relevant on their own was possible
only thanks to a discussion between the application designer (developer) and potential users of such
functions. More generally, developers are often not aware of relevant services that are potentially
available based on their code. To put it simply, they do not always think of tasks that will make sense
to other users and that are supported by method calls within their code.

These experiments also highlighted the lack of unambiguous vocabulary and natural model to
relate the concept of service to usages and to software. Concepts of task, process, operations,
algorithms, measures, functions and methods are sometimes fuzzy and so are the relationships
between them.

Understanding and evaluating description fields

It is also necessary to explain to developers and users what description items are required.
Another ‘user test’ has been performed. We prepared a description form which fields were
extrapolated from a compilation of existing models to describe and discover Web Services. This
fields were: the service categories (a service may belong to several categories in different
classifications), the performed function, the input, the output, preconditions, postconditions, effects,
errors that may occur, the possible sequences of interactions with the service, the inner process
carried out by the service (its decomposition) and the goals. A description might use several levels of
abstraction. For example, an input may be a string pattern encoded after a specific XML structure
and, at a higher abstraction level, a postal address the user is going to. In our form, fields were written
in natural language. These forms were handled to developers to describe a specific ‘services’ they felt
expert about.

The resulting descriptions were rich but very heterogeneous. For instance, a specific kind of
service category was the service ‘domain’. This field was documented with ‘Risk analysis’,
‘Generalisation’ or ‘Artificial Intelligence’. ‘Risk analysis’ and ‘Generalisation’ refer to an
application domain, ‘artificial intelligence’ to a technical domain. The field ‘function’ was often
documented ambiguously. The boundaries between the functions ‘filtering’, ‘selecting’, and
‘querying’ are not very clear. The same problem was raised with the functions ‘acquiring’, ‘deriving’,
and ‘extracting’. Preconditions and postconditions have not been understood very well. People found
redundancies between fields like the goals, effects, preconditions and postconditions.

Finally some description fields sometimes revealed difficult to value, even when their meaning
was unambiguous.

One difficulty consists in assessing the service behaviour accurately enough to document the
corresponding description fields: service category, service description, service effects, service
postconditions. The same software may have different behaviours depending on the processed data
and on the parameters. For example, a building generalisation method will have different behaviours
depending on properties of its input (like building size and granularity) and on parameters values. If
input data are buildings with non regular shapes, the same processing software will yield squared
buildings if the ‘granularity parameter’ is set at a low value and it will yield buildings with enlarged
details if the parameter is set at a high value. The general function is the same: ‘to generalise
buildings’. However the postconditions are not the same. In one case, buildings have been squared
and, in the other one, buildings details have been preserved. This has been explored in (Hubert 2002).
He built an application to assist users in valuing parameters of a specific generalisation algorithm
according to the behaviour they favoured (among all behaviours of the same algorithm) and according
to properties of their input data (in that case, objects size and granularity). Typically, important

11th AGILE International Conference on Geographic Information Science 2008 Page 4 of 11
University of Girona, Spain

properties of an input dataset are the spatial properties of real world phenomena represented in the
data, like alignments, as defined in (Neun, 2006). Identifying classes of behaviours, identifying
relevant properties and the threshold values that correspond to a change of behaviour is a complex
task.

Another difficulty is to acquire the requirements of processing software regarding the structure of
its input (Bucher, 2007). The developer has to make assumptions about the structure of the
representation of the geographic space the program will read and the assumptions are not always
rendered in the input datatype definition. The developer may not even be aware of assumptions since
‘unit testing’ is not possible in our domain. For instance, he may test his network processing software
only on datasets with connected arcs with no cycle so that he will not be aware that an error will occur
if there is a cycle in the input dataset.

PROPOSED AUTHORING MODEL AND INTERFACE

This section details our current proposal to let people express service-oriented descriptive
information about the software they develop or use. First item is a model that explicitly defines
concepts at the same time meaningful to these experts and relevant in a service-oriented architecture.
Second item is the application developed to let experts edit metadata after this model. So far we have
concentrated on the first category of experts: the developers. The same interface will be used to let the
second category of experts, the users, refine these metadata.

The model

 An ad hoc model has been designed after a review of existing models to describe web services
and existing models to describe software (Bucher, 2005). This model focuses on concepts that are
meaningful to experts and are relevant in our context. It is also very simple with a limited number of
classes. We did not introduce elements to support complex synchronisation. It is schematised on
Figure 1. Part of it has already been described in other papers like (Bucher, 2007).

A key concept coming from service-oriented paradigm is the service profile. We call it Function.
Function parameters are described through a specific class: Variable. The set of possible values for a
Variable is described with several fields of a Variable object, not all of them are rendered on Figure
1. One field is simpleDataType and it is used to specify an abstract data type for the value –which
may be a literal type, or a java class or an xml schema-. Another field is complexDataType. It is used
to describe the structure of the value when a java class or XML schema is not enough. This field is
documented with a Structure instance. The Structure model is taken from (Balley, 2006) who
proposed this model to describe dataset structures in a schema transformation application. A Structure
contains different interrelated levels of abstraction: the ontological level, the conceptual schema and
the logical schema. The latest level is the level of XML schema and java class. The Structure model
extends ISO/OGC standards to explicitly define the binding knowledge between the different
abstraction levels. A Structure may be abstract and have no logical schema or it may be purely
implemented with no related interpretation. This is important so that people can describe purely
abstract Functions.

Another important concept is the software component. This concept is very important for
developers because it designates something they know. In the context of Web Services this concept
would describe the server code (for instance altogether a Web server like Apache Tomcat, the axis
application, a java method and a deployment configuration file) but the only relevant aspect would be
the endpoint (i.e. the URL where to send the service request).

The relationship between function and software component is not easy to formalise in a
meaningful way. We propose to express it through the concept of Activity. The Activity describes how
to carry out a Function based on interactions with existing SoftwareComponents. An Activity

11th AGILE International Conference on Geographic Information Science 2008 Page 5 of 11
University of Girona, Spain

describes workflow knowledge as it is usually represented UML2 activity diagrams. Ideally,
elementary Activities (i.e. basic interactions with software) should be limited to programmatic
interactions. Some specific Activities have been modelled to describe the use of a programmatic
interface: CallJavaMethod, CallWebService. We have left the model open to describe also other kind
of elementary Activities like an interaction with a graphical user interface or any other Activity.

Activi
ty

ActivityEdge

bagOfCategories :

preconditions :

postconditions :

Function

Variable

1..n parameter

0..n
< carries

t

0..n

0

name :

value :
direction :

simpleDataType :

SoftwareCompone
nt

0..0..

Structure

0..n complexDataType

0

0

0

Ontology

ConceptualSche
ma

LogicalSchema

CSElement

LSElement

1

1

1

0

0

0

0

Ex: To simplify a
road network

Ex: To call a java
method Ex: gentool.jar

decompositionNo
des>

CallJavaMet
hod

JavaClass

Concept

Figure 1. Our model to edit service-oriented metadata about existing processing software and
related tasks.

The aim of this model is to support the description of meaningful tasks supported by existing
software (the functions). So far, functions (i.e. capacities to perform tasks) are not always explicitly
mentioned in software documentation. A simplistic example is illustrated on the Figure 2 and Figure
3.

11th AGILE International Conference on Geographic Information Science 2008 Page 6 of 11
University of Girona, Spain

SC :SoftwareCompone
nt

public class Simplificator {

public NetworkFC initial;

public NetworkFC simplified;

public void characterise(){

 …

}

public Boolean simplify(int i){

Source
code

F :Function

bagOfCategories :
‘simplify’

preconditions : ..

V1 :Variable

name : initialNetwork

value :
direction : in

simpleDataType:

V2 :Variable

name : resultNetwork

value :
direction : out

simpleDataType:

V3 :Variable

name : threshold

value :
direction : in

i l

A :Activit
y

Figure 2. A simplistic example of our service-oriented metadata for a java class. The Activity
contains two kinds of knowledge: the sequence of java method calls and the mapping between the

Function variables and java objects and fields.

This example on Figure 2 and Figure 3 is detailed hereafter. Simon is a researcher in
generalisation who has developed a road network simplification algorithm. His software is a java
class called Simplificator. The important thing here is to understand that the java method ‘simplify’ of
this java class is not a service at all despite its name. First of all, the processed data do not appear in
the method argument and return type (because they are fields of the Simplificator instance). Only one
input is described, the simplification threshold. There is as well only one output: a Boolean stating if
the input Network was actually simplified or remained unchanged. Simon knows that for the
‘simplify’ java method to perform well, the initial NetworkFC object should be non null and some of
its fields should be documented (like the cycles). This is why Simon always calls the method
‘characterise’ to document these properties before calling the method ‘simplify’.

Let us suppose that Simon wants to describe this relevant functionality afforded by his software
so that other people can use it. He uses our model to describe a Function F: to simplify a road
network. Simon chooses meaningful names for F Variables. The SoftwareComponent class that
appear on the model Figure 2 is another part of the metadata model that we do not document for java

11th AGILE International Conference on Geographic Information Science 2008 Page 7 of 11
University of Girona, Spain

classes. In that case, Simon only writes down an Activity A that describes how to carry out F with
Simplificator class. A is illustrated on Figure 3. It is decomposed in two Activities. First is
CallJavaMethod C1 to the method ‘characterise’ and second is CallJavaMethod C2 to the method
‘simplify’. In each CallJavaMethod objects, Simon specifies the mapping between the Variables
value and the Simplificator instance fields or method arguments.

F :Function

V1 :Variable

name :
initialNetwork

V2 :Variable

name :
resultNetwork

A :Activit
y

V3 :Variable

name : threshold

C2 : CallJavaMethod

nodeName: ‘step2’

softId: fr.ign.cogit.Simplificator

soft: SoftwareComponent SC

methodName: ‘simplify’
methodArgTypes: Class[] (integer.class)

argmapping: ((‘i’ , ‘threshold’))
instancemapping: ‘step1.instance’

C1 : CallJavaMethod

nodeName: ‘step1’

softId: fr.ign.cogit.Simplificator

methodName: ‘characterise’
methodArgTypes: Class[0]

argmapping: null

instancemapping:null
instance: Simplificator S

Figure 3. Detailed structure of the Activity that relates Simon Function to Simon Software, which
are detailed on the former figure. The Activity contains two kinds of knowledge: the sequence of java
method calls and the mapping between the Function variables and required java objects and fields.

The authoring application

An initial application to edit metadata about functions provided by existing software has been
developed in a PhD work mentioned before (Abd El Kader Y., 2005). This application was a first
experiment and another application is being developed based on feedback about this first application.
Figure 4 shows snapshots of this prototype.

The main criticism was that it was mandatory in this initial application to choose one function
category within a predefined list of items. Unfortunately, it was not always easy to identify the most
relevant category. That is why in the new interface, some changes have been introduced:

- Author may leave this field blank (even if it is not recommended).

- Author may select more than one category from a list of function categories.

11th AGILE International Conference on Geographic Information Science 2008 Page 8 of 11
University of Girona, Spain

- Initial list of function categories is composed of several classifications that are presented
in the following of the section. We keep very generic items to begin with.

- Author may add items to the list of function categories.

It is remarkable that in the field of geospatial information, there is not one consensual
classification of GIS functions. There are several types of classifications. None of them covers all
aspects covered by the others. Besides, we think it is important to keep the different types of
classifications because we expect different people to be keen on different types of classifications.
After a review of many existing classifications in the literature, we kept three basic classifications
with different organisations. We chose classifications that remained very generic because we fear that
too detailed classifications will constrain the authors.

- First classification is project-oriented. It is taken from (Maguire 1991)(Giordano 1994).
They identify some basic functions and organise them after four main phases of a typical
GIS project: load, integrate, analyse, communicate. Load functions are ‘acquire’,
‘transfer’, ‘edit’. Integrate functions are ‘structure’, change structure’, match’, ‘correct’.
And so on.

- Second classification is information-oriented. It is taken from (Ormeling 1998) and is
adapted to spatial analysis. Ormeling identifies three orders of spatial analysis tasks
depending on the manipulated information. First order refers to functions that relate a
phenomenon to earth surface. Second order refers to functions that describe relationships
between objects belonging to the representation of a same phenomenon (network
topology for instance). Third order refers to functions that analyse phenomena.

- Third classification is technique-oriented. It is taken from (Openshaw 1991). It is also
adapted to spatial analysis. He concentrates on ‘exploratory analysis’ and focuses on
underlying techniques like fractal analysis, Bayesian mapping, image processing, shape
analysis, quadratic methods and so on.

11th AGILE International Conference on Geographic Information Science 2008 Page 9 of 11
University of Girona, Spain

Figure 4. Snapshots from our prototype application (French interface). First snapshot shows the
simple function categories browser. Second snapshot shows the edition of an activity.

Another important feedback was linked to the description of manipulated data models. Authors
did not want to learn a new formalism to express their data model. They wanted the catalogue to
interpret their logical schemas automatically. That is why we integrate the PhD work of (Balley,
2006). She proposed a model to describe the structure of a dataset. Main lines of her model are
rendered on Figure 1 (see Structure). It binds an ontological level to a conceptual level and a logical
level. Besides, it parses automatically existing logical schemas (from Geoxygene plate-form only).
The physical level is also handled in her model but it is not relevant to our context. The Structure
model is very interesting in a service-oriented architecture perspective because it supports the
description of input and output at several levels of abstraction, which is an important requirement for
interoperability. Yet, the author of metadata may choose not to use it and to describe his variables
datatypes with simple java class. The graphical user interface of her application must be adapted to
our prototype. Based on it, the user will be able to browse existing structures (or ‘models’) and to add
a new structure in the list.

CONCLUSION

This paper tackles a specific approach that is not much addressed in existing literature: the
acquisition of metadata information about algorithms and processes that will underlie geospatial
processing services from the very experts that develop existing software or currently use them.

Important aspects have been highlighted. One is the complexity of the notion of service and of his
relation to software and usage. We propose to describe this through a specific metadata model to
describe software that encompasses the concept of Activity. This model focuses on concepts that are
meaningful to experts and are relevant in a service oriented architecture. Another important aspect is

11th AGILE International Conference on Geographic Information Science 2008 Page 10 of 11
University of Girona, Spain

the importance of structure description. There exist so far neither models nor tools to describe the
structure of data models as it will be needed in service description. This is why we use an ad hoc
model developed in a PhD work and the associated editing interface presented in (Balley, 2006).

Another important aspect has not presented in this paper. People are not willing to build and share
descriptions of their resources, unless they directly benefit from it or are forced to do so. To meet this
issue, we have developed a module that exploits our metadata to simulate service deployment. This
module is presented in (Bucher, 2007b). It is Web client that exploits our metadata to display
available ‘services’ and to facilitate their remote invocation and chaining.

Acknowledgement

The authors wish to thank the reviewers for their detailed and precious comments about this paper
and work. They also thank Guillaume Touya from COGIT laboratory who helped in improving first
drafts of this paper.

BIBLIOGRAPHY

Abd El Kader Y., 2005, Cataloguing Geographical Data Processing Tools, Conception and
Exploitation of a Metadata Model, in proceedings of the 22nd International Cartographic
Conference ICC 2005, La Coruna, Spain

Albrecht J., 1996, Universal GIS operations for environmental modeling, in proceedings of the 3rd
International Conference on Integrating GIS and Environmental Modeling, Santa Barbara, US

Balley S., Bucher B., Libourel T., 2006, A service to customize the structure of a geographical
dataset, in proceeding of the Semantic Based GIS workshop, Montpellier, France

Bucher B., Balley S., Richard D., Cébelieu G., Hangouët J.F., 2005 Shareable descriptions of data
production processes, in proceedings of the 8th AGILE conference, Estoril, Spain

Bucher B., Balley S., 2007a, A generic preprocessing service for more usable data processing
services,.in proceedings of the 10th AGILE Conference, M. Wachowicz and L. Bodum (eds),
Aalborg, Denmark

Bucher B., 2007b, A cartographic Web client to explore remote GI methods, in proceedings of the
23rd International Cartographic Conference ICC2007, Moscow, Russia

Craglia M., Kanellopoulos I., Smits P., 2007, Metadata: where we are now, and where we should be
going, in proceedings of the 10th AGILE Conference, M. Wachowicz and L. Bodum (eds),
Aalborg, Denmark

Giordano A., Veregin H., Borak E., Lanter D., 1994, A conceptual model of GIS-based spatial
analysis, in Cartographica, vol 31, n°4

Hubert F., 2002, Map samples to help GI users specify their needs, in proceedings of the 10th
International Symposium on Spatial Data Handling, D.E. Richardson et P. van Oosterom
(eds.), Ottawa, Canada

Jolivet L., Buard E., Bucher B., Ruas A., 2007, Amélioration de légende sur le Web, actes de la
conférence SAGEO, Clermont Ferrand, France

Lemmens, R., 2006, Semantic interoperability in distributed geo-service, PhD thesis, ITC, Enschede,
Netherlands

11th AGILE International Conference on Geographic Information Science 2008 Page 11 of 11
University of Girona, Spain

Maguire D. J., Dangermond J., 1991, The functionality of GIS, in Geographical Information Systems
: Principles and Application, edited by D. J. Maguire, M. F. Goodchild and D. Rhind,
(Harlows : Longmans), vol1

Neun, M., Burghardt, D., Weibel, R., 2006, Spatial structures as generalisation support services, in
proceedings of the Joint ISPRS Workshop on Multiple Representation and Interoperability of
Spatial Data, Hanover, Germany

Open Geospatial Consortium, 2007 a, OGC Web Services Initiative - Phase 5 (OWS-5), Annex B
OWS-5 Architecture

Open Geospatial Consortium, 2007 b, OpenGIS® Web Processing Service, OpenGIS® standard

Ormeling F., 1998, Environmental mapping strategies, presented at Intercarto, Brno, Czech Republic

W3C working group, 2004, Web Services Architecture, W3C Note

