
11th AGILE International Conference on Geographic Information Science 2008 Page 1 of 6
University of Girona, Spain

Design Requirements for an AJAX and Web-Service Based
Generic Internet GIS Client

Edward Nash1, Peter Korduan1, Simon Abele2, Gobe Hobona3

1Institute for Management of Rural Areas, Rostock University, Germany.
{edward.nash,peter.korduan}@uni-rostock.de

2School of Civil Engineering and Geosciences, University of Newcastle-upon-Tyne, UK.

s.j.abele@newcastle.ac.uk

3Centre for Geospatial Science, University of Nottingham, UK
gobe.hobona@nottingham.ac.uk

1 INTRODUCTION

The development of spatial data infrastructures (SDIs) is broadening out from the current systems
which contain largely only Web Map Service (WMS) interfaces offering visualisations of data to
more advanced systems offering access to the actual data via Web Feature Service (WFS) or Web
Coverage Service (WCS) interfaces and even the beginnings of web-service based access to
continuously-collected sensor data via the Sensor Observation Service (SOS) and geospatial
processing functionality over the Web Processing Service (WPS) interface. These geospatial web
service interfaces are based on standards by the Open Geospatial Consortium (OGC). A common
component of current SDIs is a portal which advertises the available services and provides a simple
viewer to allow users to explore the datasets which are available. Whilst more advanced users may
wish to bind the services into their own desktop client, many users are likely to be satisfied with the
web-based thin-client offered by the portal. The recent growth in AJAX (asynchronous Javascript and
XML) mapping applications shows how web-based portals may be made much more dynamic. The
great advantage of AJAX is that no browser plug-ins (e.g. Java Applet, Flash, SVG, etc.) are required
to provide dynamic interactions on the client side. However, the majority of AJAX mapping
applications (e.g. Google Maps, Multimap, Microsoft Virtual Earth, etc.) are proprietary, and based
on proprietary web service interfaces, and therefore not suitable for integration in a GDI context.
Open AJAX mapping toolkits such as OpenLayers are however rapidly developing, supporting a
range of open and proprietary services such as Google Maps, Microsoft Virtual Earth, WMS and even
WFS.

The basic principle of AJAX applications is that a XMLHTTPRequest object is created using
Javascript in the browser. This object represents an XML-based request, whereby the XML DOM
(Document Object Model) tree can be manipulated in Javascript to define the request. The request
may then be made, with the results being reported to a defined callback method. The asynchronicity
means that the request, server-side processing and response are backgrounded, while the user may
continue using the client. This gives the application a more reactive and dynamic feel than if the user
must wait for the full server response after each action.

What is currently not available is a complete AJAX-based client capable of acting as a web-
service based GIS, with the ability to find and bind new services (catalogues, data, processing) as
required. Such an application could be configured to act as a portal to a fixed set of services forming a
single SDI (e.g. a regional or thematic SDI), or could be used as a flexible thin-client GIS for general
use. The COWS (Client for OpenGIS Web Services) project aims to lay the foundations for such a

mailto:s.j.abele@newcastle.ac.uk

11th AGILE International Conference on Geographic Information Science 2008 Page 2 of 6
University of Girona, Spain

client based on open standards and open-source software. In this paper some initial results regarding
the functional requirements, technical restrictions and required system architecture which are
generally applicable when designing a generic web-service based internet GIS are presented.

2 REQUIRED FUNCTIONALITY OF A GENERIC CLIENT

In this section we will outline what we consider to be the functional requirements for a generic
web-service based internet GIS client. This is necessarily a superset of the functionality that would be
required for individual applications of such client software.

Current portal solutions consist typically of three functional modules;

1. a map widget where datasets may be inspected,
2. a layer manager allowing individual layers to be switched on and off and
3. a catalogue browser allowing the user to find available datasets.

Although some current systems also provide simple query tools (measure, query feature
information e.g. using WMS GetFeatureInfo), no further analysis functionality such as querying
based on attributes or more advanced spatial querying or analysis is available. Many systems are also
restricted to displaying raster data from WMS services and cannot support the display of vector data
or data from other services such as WCS.

In terms of general GIS functionality, we assume that an internet-GIS should eventually be able to
replicate the majority if not all of the functionality of today’s desktop GIS. We therefore wish to
concentrate here on functionality which is additionally required by an internet-based GIS or which
must take a significantly different form for an internet GIS to for a standard GIS.

We therefore define the first requirement of a generic client as the ability to display data, which
may be raster or vector data, and may come from a variety of remote servers such as WMS, WFS,
WCS, SOS or WPS. Both GET (key-value pairs) and POST (XML) requests should be supported; for
e.g. the WPS, not all functionality is available using only GET requests. Since further services may be
defined in the future, as well as newer versions of existing standards, the support for different data
sources should be through a plug-in framework, allowing the range of services supported by one
instance to be restricted or extended as required. A further data source which should be considered is
the user’s local data. The ability to integrate this with data from remote services would elevate a web-
based client to being a general-purpose internet-based GIS.

The second functional requirement is the ability to find, bind and remove layers. Such layers may
be data layers from a WMS, WFS or WCS, or may be the results of processing operations from a
WPS. The ability to find layers should be based on catalogue services, and it should also be possible
to find and bind arbitrary catalogue services in order to discover data or processes. In each case,
different parameters must be defined in order to bind a layer; these may be the inputs to a process, a
filter on the features to be displayed or simply the style to be used to display the layer. The parameters
required for each layer type and the most suitable input form should also be handled by plug-ins in the
same manner as for the display of layers.

The third requirement we consider here is that of exporting the data displayed in the client.
Image-based data referenced by URL could be simply saved using the usual browser functionality
(view/save image). Other data such as vector data or raw raster data which has been rendered (e.g.
from an initial WCS request) cannot necessarily be saved locally using this mechanism.

The final requirement which we define here is the ability to save a client session, i.e. the layers
and view window currently in use.

11th AGILE International Conference on Geographic Information Science 2008 Page 3 of 6
University of Girona, Spain

3 TECHNICAL RESTRICTIONS

The use of AJAX technologies without use of browser plug-ins places a number of technical
restrictions upon the client, which impact on its implementation form. The first of these restrictions is
that XMLHTTPRequest requests can only be made to the domain from which the original page was
served (the so-called same-origin or sandbox security model). This only applies to XML-based
requests – simple URL-based requests using GET (such as for an image from a WMS) may be made
directly to third-party servers, although results may not be displayed if clients have disabled display
of third-party images. For a portal site which should only communicate with a restricted set of servers
the sandbox security model is not a problem, but for a generic client supporting arbitrary servers then
a proxy on the local server is required. Having an unrestricted proxy is however a security risk. The
solution used by OpenLayers is to allow proxy requests to a fixed set of domains via a server-side
python script. Again, for portal-style clients, this is a viable approach, but for a client which should
allow users to add arbitrary services, the proxy must also support proxying to these services. A
suggested approach is therefore to use a server-side session mechanism to allow a user to add services
which may then only be proxied by that user for the duration of their session. The server-side proxy
could then also be used to sanitise any content sent from remote services, e.g. to remove JSON
(Javascript Object Notation) which may be used to launch cross-site scripting attacks. Although
solutions exist, such as Mozilla’s signed Javascript, which allow Javascript to operate outside the
sandbox, there is currently no cross-browser support for a standard solution, and even signed code
may be refused permission by the user (Powell & Schneider, 2004)

A second technical restriction is that browsers cannot directly display images resulting from
POST requests: the image must be referenced using a URI. For images from WMS services this is not
an issue as these may be referenced with a URI, but for e.g. WPS services where not all functionality
is available via GET, the use of POST is unavoidable. Note that this applies only to cases where an
image is returned; where XML is returned then this can be rendered by the client. The best solution to
this problem would appear to be the use of a server-side proxy which would cache the result of a
POST request with an image return type and make it available to the client via a GET interface. Since
the original POST operation may be expensive in terms of data transfer and processing time (e.g. a
WPS request), it would also be desirable to limit the number of times this request is made. A ‘one-
shot’ cache which would make the results available for only a single access would therefore be
unsuitable; a session-based cache allowing the result to be stored until the user closes the session, or a
certain amount of time has expired, would be better. This cached image could then be exposed to the
client as e.g. a WMS service.

A further technical restriction is the inability of standard browsers to display raster data formats
generally used in geospatial applications, e.g. TIFF and GeoTIFF. Although the majority of services
should be capable of serving results in a ‘pure’ graphics format such as JPEG or PNG, a universal
internet GIS should be capable of displaying all geospatial formats. Similarly, although
browser/Javascript clients are capable of handling and rendering XML-formatted vector data (e.g.
GML), the scalability of these solutions is not guaranteed. It may therefore be preferable to have a
server-side rendering component. This could be used for rendering formats not supported by browsers
as well as either rendering large vector datasets to raster formats or for simplifying the vector data
before forwarding it to the client. A WMS or WFS interface could be presented to the client for these
cases.

11th AGILE International Conference on Geographic Information Science 2008 Page 4 of 6
University of Girona, Spain

Client Local server

Map widget

Layer manager

Catalogue manager

Function manager

Session manager

AJAX proxy

Renderer

Cache

Remote server

Query manager

GET

URL

Figure 1: Structure of a generic AJAX GIS web-service client

4 GENERIC CLIENT STRUCTURE

This section will consider the structure required for a web-service based internet GIS based on the
requirements and technical limitations previously discussed. Due to the technical limitations, a
significant server-side component is necessary to meet the listed requirements, and Sayar et al (2006)
reach a similar conclusion in terms of the basic architecture required, although significantly less
detailed. Figure 1 shows how such a client may be structured based on a series of interrelated
components providing functionality and/or GUI widgets. This structure will now be described in more
detail.

Client

We model the client as being composed of a set of interacting components. The central
component for the user is the map widget providing the visualisation of the geographic data. Existing
components such as OpenLayers may be used for this. Closely coupled to the map widget is a layer
manager which would be presented to the user as a legend widget. This layer manager should control
which layers are displayed in the map widget and with what styles, with facilities for adding,
removing and modifying layers. For performing queries on the data, a query manager is required. This
depends on the layer manager for defining what query functionality is available on each layer and the
map widget for input of spatial parameters and, where appropriate, display of results. The query
manager allows user selections to be converted into the appropriate GetFeature or GetCoverage
requests for WFS and WCS respectively. By constructing an XML request within the AJAX client,
the user is given a wider range of options as to what to query (e.g. query by bounding box or
attribute). A further component on the client-side is the catalogue manager which is responsible for
recording the catalogues currently in use and for providing discovery facilities for new catalogues,
data and functions. Finally, a component is required to manage the analysis functions provided by
WPS or similar processing services. This component must be capable of receiving the required
parameters from the user and, if appropriate, adding the resulting dataset to the map widget via the
layer manager.

The sandbox security model on the client prevents the direct use of local data in the client.
Although display of simple image data may be possible with a workaround, since these may be

11th AGILE International Conference on Geographic Information Science 2008 Page 5 of 6
University of Girona, Spain

addressed with a file: URL, arbitrary data cannot be directly accessed. In order to incorporate local
data it would therefore be necessary to first upload this data to the local server, from where it could be
cached and accessed, potentially through a renderer for data which cannot be directly displayed.
Similarly for the data defining a user session, this could be stored directly on the server and accessed
through a unique user login, or could potentially be saved client-side e.g. using an extended Web Map
Context document, which would be uploaded to the local server to re-open the session.

Local Server

The local server requires four components. The AJAX proxy is, as previously discussed, an
essential component for communicating with remote servers. The AJAX proxy supports the query
manager by parsing the process, feature and coverage descriptions to determine what the permissible
inputs are. A session manager is required for security and to allow arbitrary remote servers to be used
without running an open proxy. For content-types not supported directly for display in a browser, a
renderer component is required. This will not necessarily render the data to a static image, but may
simply transform the format into something that can be directly rendered in the browser (e.g. an
XML-based format). The renderer may also be used in cases where scalability on the client-side may
be problematic, e.g. for large vector datasets or where a low-powered client is being used such as a
mobile device. In such cases the renderer should be configurable as to the level of detail and format
sent to the client. The final use for the renderer is in making the results of POST requests available to
the client via a GET interface, allowing images to be directly accessed and displayed in the browser.

Coupled to the renderer is a cache to prevent unnecessary calls to external servers and repeated
rendering of the same data. For more dynamic data (e.g. sensor data being viewed based on “last 5
minutes” or similar) this cache would need to be configured appropriately or bypassed. The cache
may also be used for providing the client with downloads of the ‘raw’ data. The cache is also
dependent on the session manager to prevent data being stored beyond its useful lifetime or to prevent
users accessing the data being used by others. For persistence of sessions, either a user login system
would be required or a session file could be downloaded to the client and subsequently uploaded to
the server to re-open the session. In either case a strategy for maintenance of the cache data would be
required.

5 DISCUSSION

This paper has presented some design considerations for a generic internet GIS based on web-
services and a browser-based AJAX client without plug-ins. The functional requirements of such a
system were defined, based on the principle that it should be possible to make available all
functionality available in current desktop GIS via such a systen, but that the use of these technologies
would impose some extra requirements and restrictions. The main three restrictions are the
requirement to have a local server acting as a proxy, imposed by the sandbox security model, the
requirement for a renderer for formats which cannot natively be displayed in standard browsers, and
the inability of browsers to embed images resulting from POST requests. Based on the required
functionality and restrictions, a structure for a generic AJAX GIS was developed. This structure is
interface and transport-format neutral: although HTTP GET/POST to OGC web services is the current
standard in SDIs, the use of WSDL/SOAP is increasing (e.g. Lemmens et al, 2006), albeit sometimes
only as a proxy to an OWS service (e.g. Scholten et al, 2006). The use of SOAP however presents the
same problem for browsers as POST in that resulting images cannot be directly displayed; either the
SOAP response must contain a URL from which the image may be accessed or a caching proxy
would be required.

The requirements of web-service chaining have not been directly discussed in this paper.
Particularly in the case of geoprocessing services, the input data may come from a different service,
which may itself be a processing service. The recently published OGC WPS 1.0 allows inputs to be

11th AGILE International Conference on Geographic Information Science 2008 Page 6 of 6
University of Girona, Spain

specified directly or as a GET (URI) or POST request which will provide the data, theoretically
allowing dynamic translucent service chains to be very easily constructed and invoked. The whole
chain may be defined in the client using an iterative process starting with the final operation and
recursively defining the inputs to this as either local datasets which will be uploaded to the local
server either embedded directly in the request or cached and made available to the WPS via a URL
proxy, remote resources accessed by URI or the result of a POST request. In future work, a more
advanced graphical model-builder could also be implemented using AJAX technologies.

A further use of web-service chaining may be in the use of an external web-service for rendering,
i.e. a portrayal service. Although WMS may be considered a portrayal service, it is one which is
tightly-coupled to one or more datasets and cannot therefore be used with arbitrary datasets resulting
from e.g. processing operations. One option would be to implement a processing service based on the
WPS interface, but to enable the display of general geospatial data in a browser, a standardised
renderer interface allowing GIS formats such as GeoTIFF to be rendered using a URL/GET-based
operation should be developed.

Our study is closely related to on-going efforts by the OpenLayers development community. As
already indicated Openlayers is an open source web mapping toolkit based on AJAX technology.
Although its primary focus has been on supporting WMS, various developers have extended
OpenLayers to support transactional WFS and WPS. OpenLayers, however, is currently implemented
as a standalone toolkit meant to be integrated into web-based geospatial applications. Our study
proposes to use OpenLayers within web-based GIS that takes the user from the point of searching for
a dataset, through to querying and editing the dataset. We therefore envision a client as an application
and extension of OpenLayers. In conclusion, the COWS project aims to develop a concept of such a
client, whereby existing components such as OpenLayers on the client side and GeoTools, deegree,
etc. on the server side should be re-used where possible.

Acknowledgements

The COWS project is funded by the German Academic Exchange Service (DAAD) and the
British Council through the Academic Research Collaboration (ARC) programme.

REFERENCES

Lemmens, R., Wytzisk, A., de By, R., Granell, C., Gould, M. & van Oosterom, P., 2006, Integrating
Semantic and Syntactic Descriptions to Chain Geographic Services. IEEE Internet Computing
10 (5) 42-52.

Powell, T. & Schneider, F., 2004, JavaScript: The Complete Reference, 2nd edition. McGraw-Hill
Osborne, San Francisco. ISBN 0072253576.

Sayar, A., Pierce, M. & Fox, G., 2006, Integrating AJAX Approach into GIS Visualization Web
Services. Proceedings of the Advanced International Conference on Telecommunications and
International Conference on Internet and Web Applications and Services (AICT/ICIW 2006).
IEEE Computer Society, New York. ISBN 0769525229.

Scholten, M., Klamma, R. & Kiehle, C., 2006, Evaluating Performance in Spatial Data Infrastructures
for Geoprocessing. IEEE Internet Computing 10 (5) 34-41.

