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Abstract. Statistical classification techniques complemented by GIS yield good results in predicting 
landslide hazard/ susceptibility. In this work, several well-known classification methods are applied to 
data from distinct alpine areas in Vorarlberg, Austria. It is shown that kernel methods (Support Vector 
Machines – SVM – and Gaussian Processes) outperform classic techniques for this task. As a further 
result, hazard maps for the study areas are generated, which can be used as input for early warning 
systems focussing on landslide hazard. 
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1  INTRODUCTION 

In populated mountainous regions, natural disasters resulting from large mass movements (in 
particular, slope movements and avalanches) cause huge human and material damages. According to 
the International Disaster Database, more than 10.000 people have been affected by disastrous mass 
movements in Austria’s alpine regions in the last 50 years, placing this type of natural hazard among 
the most catastrophic in this part of Europe, next to large-scale flood events (EM-DAT1 2007). 
Following heavy rainfall periods in 1999/2000, more than 250 avalanches, landslides and other slope 
movements have been registered in the administrative region Vorarlberg, resulting in estimated 
damages of about 180 million €2.  

Statistical classification methods from machine learning/ pattern recognition have been shown to 
yield good results at the task of assessing landslide hazard/ susceptibility. In combination with GIS, 
hazard maps resulting from fitting classifiers on data can be produced with relative ease, reducing 
necessary time and effort, at the same time introducing a principled and objective methodology. 

This paper is structured as follows: Chapter 2 provides a short overview on basic concepts of 
statistical classification. Chapter 3 shortly reviews related work. In chapter 4, the study areas and 
input data are described. Chapter 5 presents the methods used (logistic regression; Gaussian Process 
models; SVM). Chapter 6 discusses experimental results. Chapter 7 concludes with an outlook, 
complemented by ideas for further research. 

                                                                 

1http://www.em-dat.net 
2http://www.vlr.gv.at/vorarlberg/finanzen_abgaben/finanzen/landesbudget/weitereinformationen/rech
nungsabschluesse/rechnungsabschluss2005.htm 
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2  CLASSIFICATION 

2.1  The Classification task 

Classification can be defined as the procedure of building a mapping from a set of objects X into 
a set of classes C based on certain characteristics of the objects, often referred to as features or 
attributes.  

More formally, given a model M  (classifier) and a set of objects xi with known class labels ti, 

}...1|),{(:1 NitxT ii == 3 (the training set),  

the task of classification consists of building a mapping  based on the values of the 

objects‘ features 

CXh →:

iθ
r

, which, given a new object Xxn ∈+1 , will produce the correct class label 

. Ctn ∈+1

Since in general, XT ⊂1
4, the mapping h is an approximation of a hypothetical true mapping, 

subject to statistical limitations. Thus, the performance of the classifier will vary, depending on the 
size of the training set N, the (dis-)similarity of the elements in T1 and in a (test) set of unseen objects 
T2

5 and the number and choice of the objects’ features.  

2.2 Classifier performance 

A common measure for the performance of the classifier is the misclassification error, the 
proportion of wrongly classified objects. The misclassification error can be measured on the training 
set (the training error) or the test set. Because T1 is limited, the training error tends to be biased 
towards sets of objects following a distributional structure similar to that of T1 – hence it is also called 
apparent misclassification error. Since in general T1 and T2 will differ, the training error will be too 
optimistic with respect to a hypothetical true misclassification error, resulting from training on an 
infinite training set. 

One common technique for producing a less biased measure of classification performance is (k-
fold) cross-validation: (1) Divide the training set T1 into k disjoint subsets, each holding |T1|/ k 
objects; (2) train on (k-1) training sets, and test on the remaining k-th set; (3) repeat k times, each 
time using a different permutation of (k-1) training sets, and a different test set; (4) estimate the 
effective classifier performance of the classifier as the average of the k test errors. 

Another common method for evaluating classification performance in the case of binary 
classification6 is plotting the ROC (receiver operating characteristics) curve which is a plot of the 
proportion of objects of the class c1 correctly classified as c1 (tpr, “true positives”) vs. the proportion 
of objects of the class c2 wrongly classified as c1 (fpr, “false positives”) for each value of tpr. It 
describes the ability of the classifier to correctly recognize objects belonging to c1 (sensitivity) in 
relation to its (in-)ability to discriminate these objects from objects belonging to c2 (1-specificity).  

                                                                 

3  CtXx ii ∈∈ ,
4  XT ≠1

5 In general,  ∅=∩ 21 TT
6 C:={c1,c2} 
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One threshold-independent measure contained in the ROC curve is the AUROC (area under 
ROC) taking values between 0 (no discrimination) and 1 (perfect discrimination), computed on the 
training set, or the test set. 

3  RELATED WORK 

A review of literature on statistical classification of landslide hazard/ susceptibility reveals that 
the multivariate logistic regression, a variant of the generalized linear model, is most frequently 
chosen. ([1], [2], [3]). It is typically employed in an automatic stepwise model selection procedure -
starting with a model including all available parameters, followed by their successive elimination 
according to a measure of parameter (in-) significance, or a measure of goodness of fit of the model 
penalized by model complexity. The procedure is aimed at reducing the parameter space in order to 
avoid overfitting – fitting too many model parameters to the training data, where some of the features 
might be uninformative with respect to the class label, irrelevant for the task of discrimination, or 
simply noise. At the same time, it can be used as an operational method to select “significant”, 
“essential” or even “interesting” features. 

More recently, several methods from pattern recognition and machine learning have been proposed, 
including linear discriminant analysis ([4], [5]), neural networks ([6], [7]), and the Support Vector 
Machine ([8]). These yield good results at the task, comparable to or surpassing the performance of 
traditional techniques. 

With respect to classification, spatial data may give rise to certain problems. In the context of 
spatial classification, the property of spatial autocorrelation of grid points (pixels) may lead to invalid 
significance statements ([3]). In the case of the logistic regression, this has led to variants which 
explicitly model spatial autocorrelations ([9]).  

Another problem of spatial data is locality of feature occurrence. Depending on the choice of the 
training and test set, this can make classification of new data difficult, and estimated error rates on the 
training set may be hardly transferable out of its spatial (and also temporal) scope, due to the 
occurrence of different dispositive (e.g. geology) or triggering (precipitation, earthquake) factors. 
This is a major reason for the objective difficulty of the task of a prediction of landslide occurrence. 

4  DATA 

4.1 Study area 

Three areas in Vorarlberg, Austria were studied in the project “Georisikokarte” conducted by the 
Dept. of Applied Geology (AGK), University of Karlsruhe, in cooperation with the Federal 
Government of Vorarlberg ([10]), namely (Figure 1): 

1. Hochtannberg (HTB), 114 km² , at Vorarlberg’s eastern border,  

2. Walgau (WAL) with an area of 105 km², and  

3. Walsertal (WST), 147 km² in size. 
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Figure 1: Study areas in Vorarlberg/ Austria 

4.2 Data & Pre-processing 

Digital data was produced within ArcGIS, ArcInfo 9.2. A digital elevation model (DEM), 
topographic and geologic data and orthophotographs covering the whole area of Vorarlberg were 
provided by the Land Surveying Office Feldkirch (Austria).  

The DEM (spatial resolution of 5 m) was used to calculate various morphometric features, 
including slope, curvature, slope aspect and flow accumulation. The slope was computed as the rate 
of maximum change in z value from each cell (i.e., the first derivative of the surface). The curvature 
of a slope, referring to concavity/ convexity of a surface, was computed using the CURVATURE 
function, with output resulting from subtracting the profile component from the planar component. 
For the slope aspect (slope direction), the output is the direction of maximum rate of change in z 
value from each grid point. The flow accumulation grid was calculated by accumulating the slope for 
all grid points flowing into each down-slope grid point, and was included as indicator of erosion 
effects.  

Digital data on geology and tectonics of Vorarlberg is based on the geologic map by R. 
Oberhauser, Geological Federal Institution Vienna (scale 1:100.000)7. The vector data includes a 
number of classes describing the geology and line features for tectonic faults. The data was used to 
create a grid of 25 m grid point size. Additionally, a raster of Euclidean distances to faults was 
calculated, with the shortest distance to a tectonic fault assigned to every grid point within the area of 
investigation. 

                                                                 

7 http://www.vorarlberg.at/geokatalog_internet/index.htm 
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The Austrian land cover database for 1990, supplied by Umweltbundesamt GmbH (Corine 
Landcover nomenclature: Level 2, 25 ha minimum mapping unit, comparable scale: 1:100.000), was 
derived from satellite data (Landsat 5, TM) by means of computer-assisted visual photo-
interpretation. For Vorarlberg, it consists of 12 classes, including built-up area (4), agricultural area 
(3), forests and natural area (3), wetlands (1) and water surfaces (1)8.  

In order to apply classification techniques to the study areas, training data was constructed based 
on results from the project “Georisikokarte”. In context of the project, active landslides were mapped 
and an inventory of landslides for the study areas was constructed. Within the study area 
Hochtannberg, 107 landslides (total area of 0,79 km²) were mapped. Additional inventories were 
constructed for Walgau (262 slides with a total area of 0,62 km²) and Walsertal (field mapping until 
2004, 761 slides with a total area of 3,54 km²).  

In pre-processing, all data layers including feature layers and landslide inventories were converted 
into the ArcInfo ASCII grid format, with a size corresponding to the size of the corresponding study 
area, and a resolution of 25 m/ grid point. 

5  CLASSIFICATION METHODS 

In this work, four techniques were used: Logistic regression (standard and stepwise, i.e. without 
and with backward parameter elimination), Gaussian Process models and the SVM. 

Each classifier was trained on a set of training sets Tk={(xi, ti) | i=1…nk}, consisting of sets of 
grid points (pixels) xi, each xi having a m-dimensional feature vector φi taking on values sampled 
from a set of m thematic layers (ArcInfo grids)9, and a known class label ti, indicating if the grid point 
was part of an area where landslide occurrence was registered (t1:=1) or not (t2:=0).  

All calculations were performed within the statistical computing framework R10, using the additional 
packages MASS, nnet, and kernlab. 

 

5.1 Logistic Regression 

Logistic regression has been widely employed for statistical classification of landslide hazard. 
This is due to several desirable properties, including conceptual simplicity, straightforward 
interpretability in terms of probability estimation, and a decent performance at simple tasks. In 
addition, logistic regression readily lends itself to efficient and robust optimization schemes. 

In terms of binary classification, given a set of m-dimensional feature vectors φi of grid points xi 

with class labels ti contained in the training set, the probability of xi belonging to class c1 is given by 

 

                                                                 

8 http://www.umweltbundesamt.at/umwelt/raumordnung/flaechennutzung/

corine/ 
9 see chapter 2 
10 R: A language and environment for Statistical Computing, the R Development core team, R 
Foundation for Statistical Computing, Vienna, Austria, http://www.r-project.com 

http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=field
http://dict.leo.org/ende?lp=ende&p=eL4jU.&search=mapping
http://www.umweltbundesamt.at/umwelt/raumordnung/flaechennutzung/
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with the logistic sigmoid function σ and the inner product wTφi, defined as the logit, or log odds 
of xi belonging to class c1, and class c2: 
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In order to find a maximum likelihood solution for w, usually an efficient iterative higher order 
optimization scheme operating on the (log-) likelihood function is employed. This is true for both 
methods used in this work, glm and multinom, using the IRLS11 and BFGS optimization schemes, 
respectively.  

In the case of the stepwise regression procedure, the stepAIC method (package MASS) was used, 
which, by default, uses the AIC (Akaike Information Criterion) as criterion for model selection, 
defined as  

 

mwtpAIC 2)|(ln: +−=
rr

 

 

the first term being the negative logarithm of the likelihood function given the weight vector w 
and a vector of class labels t. 

5.2 Gaussian Process models 

Gaussian Process models are a class of non-parametric probabilistic discriminative models more 
recently introduced ([11], [12], [13]).  

From the point of view of classification methodology, Gaussian Process models are interesting 
since they are expressed in the framework of Bayesian inference while allowing the use of a kernel 
(covariance function) for representation.  

In case of classification, given a model trained on T={(xi, ti) | i=1…n}, a predictive distribution 
for the class label tn+1 given a xn+1 is defined by 

 

                                                                 

11 Iterative reweighted least squares 
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with p(tn+1=1|yn+1)=σ(yn+1), the sigmoid logistic with argument yn+1,  

Since the posterior probability p(yn+1|t) is non-Gaussian, this integral is analytically intractable, 
and is evaluated in approximation. Here, the Laplace approach to obtain a Gaussian model for 
p(yn+1|t) is used, resulting in the expressions for the moments: 
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with k a vector of values from a positive semi-definite kernel function k evaluated on the set of 
tuples {( xi, xn+1)|i=1…n}, σ a vector with the elements σ(yi), c the value of k evaluated at (xn+1, xn+1), 
W a n-dimensional diagonal matrix with elements σ(yi)(1-σ(yi)), and C the n-dimensional covariance 
matrix of the Gaussian Process y(x), equivalent to the Gram matrix of the kernel k. 

Using the above result, the integral can be evaluated, resorting to an approximation to a 
convolution of a logistic sigmoid with a Gaussian, yielding 
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(c.f.[14]).  

Gaussian Process-based regression is reported to yield good performance on different tasks from 
the prediction of chemical properties of molecules in drug design to Wi-Fi localization. In the area of 
geostatistics, an equivalent form known as kriging ([15]) is used extensively for interpolation.  

In R, the Gaussian Process model for regression and classification is implemented in the gausspr 
method, which is part of kernlab ([16]). In this work, the default Gaussian kernel rbfdot was used, in 
the functional form  

 

)2/||'||( 22

)',( σxxexxk
rrrr −−=  

 

with the hyperparameter σ, which was estimated using the sigest estimation routine available in 
kernlab. 
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5.3 Support Vector Machines 

The Support Vector machine ([17], [18]) has emerged in the 1990’s as a novel method for 
classification and regression. Like the Gaussian Process models, it belongs to the class of kernel 
methods, i.e., makes use of a symmetric positive semi-definite kernel k(x, x’), evaluated at the 
elements of the training set.  

The design of the SVM lends the model several properties making it an excellent tool for 
classification. One such property is that for the SVM, determination of model parameters (training) 
takes form of convex optimization. Thus, the training procedure is guaranteed not to produce a 
suboptimal solution wrt the global optimum12.  

An important distinction of the SVM to the simple linear model is the introduction of the concept 
of the margin. The SVM training procedure is aimed at this quantity, defined as the perpendicular 
distance between the decision boundary and the closest of the data points. Maximizing the margin 
leads to a particular choice of decision boundary, with a maximal separation of the classes. This 
property lends the model improved generalization capabilities with respect to unseen data. 

Another property resulting in better generalization capabilities of the SVM is the adaption of a 
“soft” margin. With the soft margin property, the SVM is allowed to make errors in classification on 
the training set. Due to this property, the SVM is less sensitive to the presence of outliers in the 
training set, hence less prone to overfitting. 

In the dual (kernel) formulation, the definition of the SVM is 
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with Lagrange multipliers an resulting from a quadratic optimization of the term  
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12 This is not the case with all classifiers, e.g. artificial neural networks, which are notoriously subject 
to the problem of falling into local minima of the error function. 
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The dual formulation of the SVM introduces the kernel function, which can be interpreted as the 
inner product of the inputs in a feature space. Since it does not require an explicit definition of the 
mapping into feature space for each pair of arguments (xi, xi’), it is possible to substitute the inner 
product kernel, defined as  

 

)'()()',( xxxxk T rrrrrr φφ=  

 

with another symmetric, positive semi-definite kernel k to separate the data in some (possibly 
high or even infinite dimensional) induced space13. 

The direct solution of a quadratic programming problem is computationally demanding. For the 
above quadratic optimization problem, efficient procedures like the SMO procedure ([19]) have been 
developed. In practice, the procedure is found to have a scaling with N between linear and quadratic. 

A suitable model for the prediction of class probabilities can be obtained by fitting a logistic 
sigmoid to the output of a previously trained SVM. This method is based on an idea due to ([20]). 

Within R, several packages implement SVM. In this work, the ksvm method in package kernlab 
was used, in the described variant of SVM (C-SVM) and the Gaussian kernel rbfdot. As in the case of 
Gaussian Process models, the hyperparameter σ was estimated using sigest.  

6  RESULTS 

6.1 Pre-processing 

Four classifiers were compared on four independent data sets, drawing on methods described in 
chapter 5. In each case, the model was trained on a balanced set of 50% landslide and 50% non-
landslide grid points, and subject to 5-fold cross-validation.  

In order to determine the influence of training set size on classification performance and stability, 
training sets of decreasing size were used, corresponding to fractions of the full data set size. 

For each dataset, a set of m thematic layers was used including morphometric data (elevation, 
slope, curvature, and aspect), geology, vegetation, flow accumulation and Euclidean distance to 
faults. The layers were derived from a DEM, a geologic, and a geotechnical map using standard GIS 
functionality. In course of further pre-processing, real-valued features (elevation, slope, curvature, 
flow accumulation, distance to faults) were standardized. Non-continuous valued features (slope 
orientation, geology, and vegetation) were transformed to a number of binary features equivalent to 
the number of values assumed on the dataset. 

In the case of the third study area (WST), the data ( >11000 landslide/ non-landslide pixels), was 
split into two (roughly) equal sized datasets corresponding to the north and the south part of the study 
area in order to obtain training sets of comparable size.  

Table 1 summarizes the size of each training set, the number of features and the overall size of the 
study area.  

 

 

                                                                 

13 This is often referred to as the kernel trick. 



11th AGILE International Conference on Geographic Information Science 2008               Page 10 of 17 
University of Girona, Spain 

Study area Size of  

dataset 

(pixels) 

# of  

Feature
s 

Landslide  

area (pixels) 

Non-landslide 
area (pixels) 

Landslide/  

non-landslide 
pixels 

HTB 2400 59 1200 176277 0.0067 

WAL 1960 61 980 166235 0.0058 

WST_N 4950 60 2475 117592 0.0206 

WST_S 6320 51 3160 110938 0.0276 

Table 1: Training data 

 

6.2 Classification performance 

A summary of the results (Tables 2-5) shows that the kernel-based classifiers consistently 
outperform logistic regression (both with and without parameter elimination). This is true for all 
combinations of study area and training set size. The SVM shows overall best results, achieving a 
classification performance over 80% in three out of four cases, performing best on the third dataset 
with full training set size (84.5%).  

Gaussian Process models turn out competitive, with classification performance of less than 2% 
worse than the SVM on average.  

Conversely, results of the logistic regression in both variants set the method apart from the SVM 
and Gaussian Process models. The difference in performance ranges from 4.5% in the best case 
(dataset 2) up to 12.2% on the first dataset with full training set size.  

Reducing the size of the training set seems to have less of an effect on the classification 
performance here, with relatively constant results except for a notable decrease in case of dataset 2. 
For dataset 1 (HTB), a comparison of training error vs. test error for training sets of decreasing size 
shows signs of overfitting on the part of logistic regression, with a divergence of error rates on 
training (lower error) and test set. A corresponding trend, albeit less distinct, can be observed in the 
case of the stepwise variant.  

In part, the inferior performance of the logistic regression might be considered a result of the 
relative simplicity of the model, which might be interpreted as a “soft” version of a threshold-based 
discriminant wTφ in the logit space. By definition of the logit: 

∑
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the logit space might appear as a natural feature space for the task of probabilistic discrimination. 
However, the relative simplicity might give rise to certain problems. 

First off, a linear separation based on logit threshold might not exist in the (one-dimensional) logit 
space, which might turn out sub-optimal for discrimination, e.g. due to outliers in the likelihood, 
p(φi|Ck).  
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Another source of error might be introduced by the model’s assumption of independence of 
p(φij|Ck) and (φi’j’|Ck), for j and j’14. This assumption does not hold in our case, with at least one 
example of (non-linear) functional dependence for the features (the morphometric parameters). 

Another assumption of independence is implicit in the formulation of the likelihood function, 
defined as  

∏
=

−−=
N

i

t
i

t
i

ii yywtp
1

1)1()|( rr
 

In this case, independence of the grid points is assumed for i, i’15. However, this assumption 
might not hold in the presence of spatial correlation, resulting in an approximation to the surface 
subject to optimization. 

Finally, an examination of the logistic regression model in the standard variant reveals missing 
regularization. As a consequence, the method is more prone to overfitting, which is confirmed by the 
results. 

Classifier  Test error [%] 

 Training  

sample size 
[pixel] 

1920 960 480 240 

Glm  33.5 34.5 35.1 35.4 

Glm_stepAIC  32.3 33.5 34.4 35.2 

Gausspr  23.2 25.2 27.7 29.2 

Ksvm  21.3 23.8 25.5 27.6 

Table 2: Classification performance for study area 1 (HTB) 

 

Classifier  Test error [%] 

 Training  

sample size 
[pixel] 

1568 784 392 194 

Glm  24.3 24.8 25.1 30.2 

Glm_stepAIC  24.1 24.6 25.8 31.4 

Gausspr  21.8 22.3 23.6 25.4 

Ksvm  19.8 21.2 21.7 25.7 

Table 3: Classification performance for study area 2 (WAL) 

 

                                                                 

14 '},...1{', jjMjj ≠∈  

15 '},...1{', iiNii ≠∈  
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Classifier  Test error [%] 

 Training  

sample size  

[pixel] 

3960 1980 990 495 

Glm  25.2 25.6 25.2 26.4 

Glm_stepAIC  25.3 25.6 25.3* 27.1 

Gausspr  17.5 19.7 21.2 24.7 

Ksvm  15.5 19.8 21.9 24.3 

Table 4: Classification performance for study area 3a (WST_N) 

Classifier  Test error [%] 

 Training  

sample size  

[pixel] 

5056 2528 1264 632 

Glm  25.6 25.8 26.3 26.1* 

Glm_stepAIC  26 26 26.6 26.8 

Gausspr  20.8 21.8 22.8 24.3 

Ksvm  19.9 20.7 21.8 22.8 

Table 5: Classification performance for study area 3b (WST_S) 

6.3 ROC curves 

Using the ROCR package, ROC curves were drawn for each combination of study area and classifier 
for the full training set size. Fig. 1-4 show a set of plots for the four classifiers for the study area HTB. 
AUROC values are given in Table 7, reflecting performance in Table 2 (first column). Visual 
inspection of Fig. 1-4 and a comparison of the AUROC for the four classifiers confirm previous 
observations, with the kernel methods emerging as better models in terms of classification 
performance on unseen test data. 

  

Fig. 2: HTB/ glm Fig. 3: HTB/ glm_stepAIC 
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Fig. 4: HTB/ gausspr Fig. 5: HTB/ ksvm 

 

Classifier AUROC on test set [%] 

 Run 1 Run 2 Run 3 Run 4 Run 5 Avg. 

Glm 76.8 74.3 76.3 77.3 74.4 75.8 

Glm_stepAIC 76.3 74.2 76.1 76.0 74 75.3 

Gausspr 86.5 84.6 84.4 85.1 83.3 84.9 

Ksvm 88.4 86.3 87.5 85.9 85.8 86.8 

Table 7: AUROC for different classifiers on study area 1  
(HTB)/ full dataset 

Hazard maps 

After classification, the trained models were used to generate hazard maps for each study area. 
For this task, all available training data (i.e., all 5 subsets) was used, and the trained model was 
applied to the whole study area, containing the total number of pixels (Table 1). Hazard maps were 
generated as achromatic 8 bit raster images, the value of each pixel being the output of a sigmoid (in 
the case of the logistic regression) or the output of a sigmoid fitted to the output of the respective 
model, scaled by the maximum 8 bit value. To facilitate post-processing using GIS functionalities, 
each map was exported in a number of raster formats, including PNG, TIFF, and ArcInfo ASCII Grid 
using the rgdal package. Fig. 6-8 show (inverted) hazard maps resulting from ArcGIS post-processing 
of rgdal output based on results generated for HTB, WAL and WST by the (best-performing) SVM 
model.  
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Figure 6: post-processed hazard map (SVM), study area HTB 

 

 

Figure 7: post-processed hazard map (SVM), study area WAL 
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Figure 8: post-processed hazard map (SVM), study area WST 

7 CONCLUSIONS/ OUTLOOK 

In this work, several different classification techniques were applied to the task of an assessment 
of landslide hazard/ susceptibility. Comparison of classification performance on unseen test data 
shows that kernel methods (Gaussian Process model and the SVM) consistently outperform logistic 
regression, with misclassification errors for independent test datasets and different test set sizes 
hinting at robustness of the result.  

The inferior performance of the logistic regression model can be explained by the relative 
simplicity of the model, which does not reflect (non-linear) dependencies inherent in the data. In 
addition, the lack of a built-in regularization mechanism on the part of the logistic regression hints at 
inferior generalization capabilities. 

In contrast to the logistic regression, both kernel methods have the property of explicitly 
modelling a correlation between the data points by means of the kernel/ covariance function. Also, 
both kernel methods exhibit generalization properties superior to logistic regression in both variants.  

SVM in particular are known to have improved generalization capabilities by design, resulting 
from the maximization of margin and the “soft” margin property. The Gaussian Process model is 
regularized by the Gaussian Process prior, a Gaussian with mean 0 and covariance function k. 

Our interpretation of the results suggests several opportunities for improvement departing from 
the logistic regression model. Generalized linear mixed models/ hierarchical models considering 
effects present in subsets of the data present a viable option. As an alternative, a systematic 
investigation of the potential of kernel methods with respect to improvements at our task – based on a 
deeper understanding of the nature of spatial data – might offer opportunities for further research. 
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