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INTRODUCTION  
 

Data are traditionally evaluated using well-defined data models. But results may be variable if the 
data are not homogenised or standardised. Comparison of actual data with reference data presents a 
data model which supposes no error. The problem with evaluating positional quality, especially of 
maps, is a lack of temporal quality, therefore the reference points for evaluation should be chosen 
very carefully. The researched data are historical maps, where the data model and the character of 
quality parameters are more complex, and include subjective factors and uncertainties. The study 
account for space and time; consider the historians, geographers, and surveyors; and support the 
reconstruction of a physical and human landscape (Plewe 2002). That acquired information can 
stimulate the imagination and increase the understanding of possible quality parameters of data and 
error distribution models (Khorram et al., 1999). 

Statistical techniques have traditionally been employed for quality control and error assessment, 
according to common standards. Visual methods are less accepted; nevertheless they can be important 
tools for both preliminary and subsequent evaluation (Wood and Fisher, 1993). These methods are 
excellent for obtaining first impressions and other insights about data sets such as historical maps. 
Unfortunately, they require an operator with expert knowledge to improve objectivity. This leads to a 
possible hypothesis of one or more error distribution models that are then simulated with Monte Carlo 
(MC) statistical methods. Two principles for the evaluation of projected error models and types are 
applied evaluating land use acquired from historical maps: boundary and surface simulation. Both 
principles address random, locally systematic, and systematic error distributions. The boundary error 
is simulated with vector lines and polygons. The surface error is simulated by producing error 
surfaces that shift every grid point or square-shaped polygon. Some outputs of this research were used 
for the Triglav national park case study region in Slovenia. There we tried to determine the quality of 
a range of historical maps, used for land use analysis. 

 

POSITIONAL ERROR SIMULATION 
 

MC simulations as statistical methods are generally used in cases where physical processes are 
random or the theoretical mathematics in the different hypothesis tests is weak (Openshaw et al., 
1991, Brown and Duh, 2004). The MC methods of positional error analysis follow the statistical 
theories of error distribution and propagation (Burrough and McDonnell, 1998). Errors can be 
simulated to evaluate differing qualities of classification of borders between land use classes. The 
simulations may also follow spatial analyses that provide combinations of land use, slope, aspect, 
tourism resources, etc. A complex probability model can be specified for every source of error if the 
understanding of spatial variability components is high. Multiple and equally probable outcomes from 
the model are often needed because a single simulation of the random function/fields is really just one 
of a large number of representations of the specified probability model (Cressie, 1993, Haining, 
2003). 

One outcome of the random function is unconditional simulation. That yields outcomes which are 
consistent with the probability model but in which simulated data values do not correspond with 
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known data values. In the case of a normal distribution, the mean value is 0 and the standard deviation 
is 1. Simulations that respect data are conditional. In this case they come from a normal probability 
model where mean and distribution are specified but at the locations where data values are known the 
outcomes match these. Transformation of the unconditional uniform distribution of a discrete random 
variable via cumulative to normal distribution can be applied by the Box-Muller method. This is a 
suitable approach for simulation of error in spatial data. Variables used for MC simulations of error 
are usually spatially autocorrelated with respect to the nature of the error. A general procedure for the 
MC simulation algorithm is then: 

• generate a set of random numbers; 
• transform n random numbers to an appropriate unconditional distribution; 
• respect current data and the associated error model to compute a conditional distribution; 
• repeat the previous steps N times; 
• analyse and evaluate a distribution from the N outputs. 

 
 

DATA: LAND USE FROM HISTORICAL MAPS 
 

For this case study, the Josephine Ist Military Topography (JMT28.8; figure 1), named for 
Austrian Joseph II, was used. 

 

Figure 1. The insertion of the Josephine Ist Military Topography (JMT28.8). 
 

There were some reasonable drawbacks to the historical maps JMT28.8. The old maps were 
found in the archives and only paper prints were available for scanning to a digital format. Therefore 
substantial deformations of the paper could be expected that were not easily distinguished from 
deformations of triangulations and other sources. Maps were made with different mapping techniques, 
varying object catalogues (map legends) and a lack of projection and transformation parameters. The 
origin of the original reference system was not available, so we used reference points. 
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The next problem is illustrated by typically sparsely surveyed mountain. Many details were not 
measured or were mapped just by eyeballing, and therefore succumbed to gross errors. Nevertheless, 
identical points on the JMT28.8, linked with contemporary orthophotographs, were carefully chosen 
considering historical knowledge of measurement techniques and possible environmental changes. 
Geometrically, the best points were the trigonometrical ones. These were mostly churches or towers. 
The older maps are, the less confidence can be placed in identical points, due to natural or 
anthropogenic changes in land use. We found out that was for JMT28.8 better to match identical 
points roughly in order to more systematically cover an entire mapped area and avoid locally large 
distortions. 

The land use classifications of JMT28.8 were rearranged into 14 classes based on the 
contemporary land use data set, resembling the Corine land cover nomenclature. The majority of 
classes were distinguishable, though in some cases, just barely. For better categorisation, additional 
information was used: the geomorphology of relief elevation, aspect, proximity of urban areas, the 
increasing elevation of the upper vegetation level during the last decades, and the general order of 
vegetation zones. Land use data was acquired by a backwards editing method – map-by-map, starting 
with the newest vector-based land use data. 

The difficulties described above greatly affected the thematical and positional accuracy of the 
georeferenced maps and derived land use data. They were evaluated on the digitised land use data sets 
despite the difficulty in some cases of distinguishing them (Lester and Chrisman, 1991). Another 
problem was the extrapolation of the general positional error of entire map surfaces to the boundary 
error in classified polygons, representing polygons of land use. This could be also considered as a 
thematic or attribute problem. Briefly, we can say that most of the error comes from the less precisely 
mapped land use features in the original maps and positionally/thematically incorrect interpretations 
of the boundaries between the classes. All mostly empirical tests were applied and are described in 
Podobnikar and Kokalj (2007).  

We considered that after a sensitive georeferencing of the maps, the error distribution model was 
related only to positional accuracy, evaluated with RMSE (root mean square error), evaluated using 
different methods of transformation through georeferencing, and AME (averaged maximum error), 
calculated as differences between manually selected identical points on georeferenced maps and 
nominal data sets (contemporary orthophotos and maps), and then averaged. As areas of the maps 
were chosen with obviously lower expected quality, the AME was considered to be locally maximal. 
This measure controls RMSE numerically as well as visually by marking distances and directions 
(table 1). By statistical and visual evaluation of historical maps and an exploration of the 
methodology and principles of historical mapping, we deepened our knowledge and understanding of 
the overall quality of the maps and the positional error distributions of acquired land use data sets. 

 JMT28.8 
RMSE 16.7–19.1 mm 
AME 19.8 mm 

Maximal 36.5 mm 
 

Table 1. Positional accuracy evaluation of historical data set JMT28.8. 
 

SIMULATION PROCEDURES AND RESULTS 
 

Due to possible errors, JMT28.8, the simulations of the land use data were performed with the 
following assumptions: 
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• random effects: instruments, human factors and others that are indefinable with respect to 
precision; 

• locally systematic effects over larger areas that could be also classified as spatially smooth or 
random on a smaller scale: triangulation errors, errors in measurements of long distances; 

• systematic/gross effects over the whole case study area: projections, measurements. 
 

Assumptions for the second and the third categories of error were not so easily and uniquely 
simulated as those for the first category were. Systematic or even gross errors may not be distributed 
randomly, but their nature is sometimes similar to stochastic, and at the same time they are almost 
impossible to remove. In spite of the inexact and uncertain classification of error types, we attempted 
to simulate all three groups using statistical MC simulation as the most practical but still reasonable 
solution. 

Technically, the MC error simulation of error models and types was applied using two different 
principles that were denoted as the “boundary” and “surface” principle. The proposed methods of 
simulation involved several common steps that were considered in both principles. The first step was 
to create random values applying standardised unconditional normal distributions. Those distributions 
were multiplied with the RMSE values of the JMT28.8 (Table 1). The RMSE was transformed to 
standard deviation values σ that are suitable for simulations of stochastic processes with the following 
simplification: RMSE = σ. We considered that the actual degree (value) of RMSE is possibly higher 
than σ, but the character of error was modelled consistent with previous tests. All simulations were 
handled with ESRI’s macro language AML, but processed with GNU C. 

Boundary principle 
 

The first approach under the boundary principle followed the rules of boundary simulations 
(Burrough and McDonnell, 1998) applying vector lines. RMSEs measured on the JMT28.8 were 
assigned to the land use boundaries acquired from the JMT28.8 as σ. The average σ was 28,800 · 
17.9 mm = 515 m (table 1). Even though this is high, we were not able to reduce this error, as more 
reference points could not be located. 

Furthermore, we assumed that the shape of a particular simulated object remains similar to the 
acquired original. Applying that condition, neighbourhood nodes of the boundary lines should be 
correlated. Rather than programming the correlation between the nodes within the simulation of one 
data set, a simpler approach was to apply the correlation coefficient over the entire study area. The 
correlation coefficient CORR was applied using equation: 

xchang = xorig + σ(x1 · CORR + x2 (1 – CORR)), 
ychang = yorig + σ(y1 · CORR + y2 (1 – CORR)), 0  ≤ CORR ≤ 1 

 The chosen value of CORR depends on correlation between generalisation of the vector lines and 
σ, or, on the other hand, on the computed ratio of absolute to relative accuracy. The numerical 
evaluation was confirmed by the example presented in figure 2 where the appropriate CORR is 
between 0.5 and 0.75. With regard to the unconditional normal distributions, x1, y1, were calculated 
once for entire data set, and x2, y2 separately for every node point. 

The second approach under the boundary principle was analogous to the first, except that this 
simulation was applied to the boundaries between polygons and not to the lines themselves. 
Preserving the original topology on simulated polygons after positions of the nodes were changed, as 
much as possible requires a much more complex numerical solution. We solved the problem 
successfully and quite robustly, even where low correlation coefficients had been used. With CORR 
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between 0.50 and 0.95, we also simulated some systematic effects. The simulations were repeated for 
100 times and the singular data sets were rasterised to unique resolution, and then all summed up: 

 

 
      CORR = 0.00         CORR = 0.50 

 
      CORR = 0.75         CORR = 1.00 

Figure 2. MC with 5 simulations of the vector lines boundaries using different correlation 
coefficients between neighbour nodes. 

 

 

Figure 3. Land use data acquired from the JMT28.8 simulated 100 times with the MC method using 
the land use boundaries for the entire Triglav national park (area approx. 50 by 50 km). 
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• lines: by presenting five simulated data around original lines (figure 2); 
• lines: fuzzy boundary as a “shadow” effect using all 100 simulated lines (figure 3); and 
• polygons: fuzzy boundary by presenting 100 simulated data using different colours. 

 
Surface principle 
 

With continuous surfaces, the error distributions were simulated for entire areas of land use 
acquired from the JMT28.8 maps. The idea arose from the determination that important parts of error 
distribution are locally systematic effects, especially in the mountainous areas of the historical maps. 
These can be suitably represented by an autocorrelated random surface. Locally/regionally shifted 
homogenous areas were simulated; for example, one valley or one settlement is shifted in context on 
the map. Such homogenous areas are difficult to classify, but they may be simulated. The same 
foundations were used to apply spatially rough effects related to errors on short distances. This error 
distribution is quite similar to the boundary principle described above, but instead of lines 
representing boundaries, small areas were simulated as smooth and rough continuously varying error 
distribution surfaces. 

Two artificially autocorrelated random surfaces were generated following a standardised 
unconditional normal distribution. Moran I was measured to achieve the required degree of 
autocorrelation (Haining 2003). This procedure was performed for the smooth and rough random 
surfaces bearing in mind their different spatial resolutions. The procedure is based on the exchanging 
of randomly selected points on the random surface that covers the study area and autocorrelation is 
controlled with the Moran I. This procedure may require many iterations. 

 

 

Figure 4. One of the six MC simulations of selected land uses from the JMT28.8. A random 
distribution surface represents absolute values between coordinates shifted in the x and y directions. 

Brighter areas mean larger shifts. Contour lines support shaded surface. The autocorrelated 
arrangement of square polygons with 200 m sides presents possible distortions of land use data due to 

shifts. 
After the smooth and rough surfaces were computed, they were combined to produce a more 

complex error surface, considering empirical results of discovery and a determination of their portion. 
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The value of the portion comes from the relationship between many imprecise measurements between 
selected local/regional areas, and has a higher precision inside of those areas. Specifically, the chosen 
portion of the smooth surface was much higher than that of the rough one, but could be different 
(mountains vs. plains). 

As with the boundary principle, the approximated σ = 515 m was annotated to the standardised 
unconditional complex error surface. This required attributing shifts in the x and y directions due to 
complex error surfaces. The shifts were applied using two approaches. The first was tessellation of 
the land use areas into uniform square areas (vector polygons) with 200 m sides based on attributes of 
land use categories. Each tessellated square was shifted independently in the x and y directions 
according to the values of the complex error surface. This approach was additionally combined with 
the second approach to the boundary principle described in the previous section, so the borders of all 
the square polygons were simulated (figure 4). Thus we effectively simulated error distribution due to 
all three presumed effects: random, locally systematic and systematic/gross. Twelve complex 
simulated error surfaces were produced for shifts in the x and y directions, thus the error was 
simulated for six times. 

The second approach to the surface principle is similar to the first approach, but instead of squares 
as vector polygons, denser grid points were produced to simulate a grid-based land use error 
distribution surface. 

 

CONCLUSION 
 

Explanation and objectification of more complex but significant phenomena hidden within spatial 
data is a great challenge for the expansion of this study. We proved that a more effective research 
method is to study particular problems on the actual applications using real datasets, rather than try to 
generalise a theory again. A successful study that was presented using simulation Monte Carlo 
methods should be supported by other aspects, even by in situ observations, admitting the capabilities 
of researchers for objective interpretations of the problems. The procedures for consistent analyses 
can be significantly simplified, making the concept clearer and the process more effective. 
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