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Abstract. An inductive method based on spatial network characteristics and geographical 
neighbourhood is proposed, which allows to extrapolate a sample of representative passenger counts 
for an existent public transport network. The most important predictors can directly be deduced from 
a logical model of the spatial network. Furthermore, the attractiveness of stops can be modelled by 
spatial densities in their geographical neighbourhood. The method is formally specified using a typed 
logic. 

 
INTRODUCTION 
 

State-of-the art techniques for transportation forecasts normally rely strongly on deductive 
methods. In these approaches, traffic prediction is done in a ‘four step’ process of urban 
transportation planning: trip generation, trip distribution, mode choice and route assignment (Ortuzar 
2001). This means that 4 predictive models, a traffic demand model, a trip distribution model (e.g. a 
gravity model), a modal model (transportation type) and a route assignment have to be interlinked, 
and thus the error of each one sums up for the whole model. For instance the gravity model distributes 
trips over the network according to a theoretical distribution (Erlander 1990). It is known that such 
deductive models can inherit a danger of estimation bias. 

Flyvbjerg et al. (Flyvbjerg 2006) showed in a study about 210 infrastructure planning projects that 
the inaccuracy of traffic forecasts with this approach can be immense: Rail passenger forecasts did 
show a strong bias, and the forecasts were found to be inaccurate by a high margin (72% of all rail 
traffic forecasts had a relative error greater than 66%). Nevertheless, the method of deductive 
transportation forecast is especially useful and designed for planning and engineering of new traffic 
infrastructures, that is to estimate future traffic under currently non-existent circumstances.  

In this paper, we propose a different methodological task, which gives reasons for an inductive 
(and simpler) forecasting method: How can public transport passenger frequencies be extrapolated in 
the network, that means, predicted for unknown (i.e., unmeasured) parts of an existing network 
infrastructure under fixed socioeconomic circumstances? Predictions should be possible for unknown 
cities, or unknown regions. As recent results of ‘space syntax’-related research indicates, the spatial 
network configuration is an important predictive factor for public transport traffic. Furthermore, there 
seems to be an additional influence of the geographical neighbourhood of a station (Chiaradia 2005). 
On the empirical basis of a sample of representative passenger measurements, it should therefore be 
possible to train a statistical model that primarily uses simple spatial network characteristics and 
geographical neighbourhood descriptions as predictors for passenger frequency. The authors used this 
method in a project to build media performance parameters for arbitrary outdoor media locations in 
Germany based on estimated traffic frequencies on an extensive network. 

The data model of the spatial network is considered as an important part of the method. Therefore 
an abstract specification of this data model will be given, which can be implemented in various ways. 
In the next section, abstract operations and data types of the transport network are specified. 
Afterwards, the feature set for prediction can be expressed in a formal way. Using this feature set, 
several statistical models were trained and evaluated with machine learning algorithms on 781 local 
passenger counts in 3 german cities. 
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AN ABSTRACT SPATIAL NETWORK DATA MODEL 
 
The basic data model 
 

In the following, data types are expressed as sets by upper case symbols. Data structures and 
operations are formal expressions of a typed higher order logic, as in Scheider 2007. In this language, 
arbitrary complex data structures for geometrical and graph logical properties can be conveniently 
specified together. Syntax and semantics of this language are equal to the ‘Basic Extended Simple 
Type Theory’ (BESTT) approach (Farmer 2003 and Farmer 2004), so that each type stands for a set, 
and derived types can be constructed from atomic ones by combining them to tuple, function, set and 
list types, meaning their appropriate set theoretic combinations (compare table 1). Let Α and Β be any 
two types. In this formal approach, every expression ‘a’ has a type ‘Α’, that means a is a member of 
the set denoting Α, and they can be written together like this, a:Α. Expressions can be formed by 
typed variables, constants, function abstraction (written as ‘λ[variable].[expression]’) and function 
application (written as ‘[function]([expression])’), so that function arguments are of the appropriate 
type. Some language constants with obvious meaning are used, like:  

||:set[Α]→Rat (:=set cardinality), ||:list[Α]→Rat (:=list size), #i: Α0×…, Ai,…×Aj→Αi (:= extracts 
the ith element of a tuple), [i]:list[A]→A (:=extracts the ith element of a list), if: Bool×Α×Α→Α 
(:=conditional expression), I:(A→Bool)→A (:= finds a unique object of type A by a predicate 
(definite description)), as well as well known logical and arithmetic symbols. The basic types of the 
basic data model are introduced in table 2 and in the following text. 

 

 

 

 
 
 
 

Table 1: Type constructors for data types. 
 

The basic data model of the spatial network is a partially embedded graph without loop edges. Let 
‘N’ be the data type of nodes of a public transport network, so each node stands for a public transport 
stage. Let ‘point’ be a total function from ‘N’ to the 2-dimensional Euclidian space ‘P’, so that each 
stage has a geographical reference (a geometrical embedding). Let ‘E’ be the type of edges of the 
network as the cross product of ‘N’, that is E:=N×N. Linear geometries for edges of a public transport 
network are not necessary for the proposed method, and therefore the graph needs only a ‘partial’ 
embedding. Furthermore, edges that connect a node to itself are not allowed. 

There are some additional data types. Let ‘POI’ be a type for ‘points of interest’, that is spatial 
point locations of attractive facilities, e.g. touristic and cultural facilities, public utilities, hotels, and 
so on. A subset of this type can be considered as a layer of geometrical points. Let ‘point’ be also a 
function from ‘POI’ to ‘P’. Let ‘Rat’ be the type of a rational number, and ‘T’ be the type of a 
timestamp. 

 

 
Type 

constructors 

 
Comments 

Α×Β Tuple type 
Α→Β Function type 
set[Α] Set type 
list[Α] List type 
P[A] Power set type 
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Table 2: Basic data types. 
 
Building the connectivity network graph from raw data 
 

A graph as a model of the public transport network infrastructure can be derived from a digital 
schedule of each public transport line. In analogy to Güting (1994), such a line can be modelled as a 
collection of paths through a line’s connectivity graph. Suppose a schedule for a certain line ‘1’ is a 
list of paths, each path being a connected list of edges through the network, that is a sequence of pairs 
of stops of the public transport line ‘1’, with each of the two stops having a timestamp (data type T) 
for departure and arrival time: 

   (3)  PATH : list[E×T×T] 

(4)  SCHEDULE : list[PATH]   

A connectivity graph is of type G : P[E]×P[N]. Let E1 be the set of edges of the paths of line ‘1’, 
and N1 be the set of nodes in E1. Then the connectivity graph of line ‘1’ is (g1: G) :=(E1, N1).  

Let L = {1,…,m} be a set of numbers being public transport line descriptors of a network. The list 
of connectivity graphs of these lines is given by Glistm : list[G], and the list of schedules is given by 
SCHlistm : list[SCHEDULE]. A generalised connectivity graph can then be derived by the union of 
all subgraphs Gm := (Em, Nm), with Em := ∪i=1

m (Ei) and Nm := ∪i=1
m (Ni). 

Network operator for schedule frequency of lines 
 

The simplest and most important feature for this model is the frequency with which a line passes a 
certain edge. This frequency is a strong indicator for traffic pressure between stops. For an edge, it 
can easily be derived from the line’s schedule by counting the number of times this edge occurs in all 
paths of the schedule. Additionally, the number of stops for all lines in L can be calculated by 
summing up the frequency for all lines: 

  (5) frequency : SCHEDULE×E→Rat   
     :=λs:SCHEDULE, e:E. ∑i=0

|s|-1 ∑j=0
|s[i]|-1 if(#1(s[i][j])= e, 1,0) 

   (6)  nStops : E→Rat  
     :=λe:E.∑i=0

m frequency(SCHListm[i], e)  

 
Data types 

 
Comments 

N Nodes 
E Edges := N×N 
T Time stamps 

Rat Rational numbers 
P 2-dim Euclidian space:= Rat×Rat 

POI Points of interest 
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Network operator for network influence on stops 
 

In order to use the characteristics of the logical network for a passenger prediction model, a 
‘transport network influence’ shall be derived. This is a synthetic feature that implies how much a 
network node is supposed to be under traffic pressure according to the network logic.  

The first step is an operation to identify central nodes. Central stops normally have many lines 
passing them, therefore this could be taken as an indicator. But the problem is that the absolute 
number of lines stopping at one stage is strongly dependent on the width of the network and the 
overall number of lines existent. In order to derive a network-independent relative measure, the 
absolute number has to be statistically normalized. This can be done by using a high quantile, e.g. 
Q95%, of line numbers for stops of a public transport network, and to classify all stops with line 
numbers greater than this quantile as ‘central’: 

(7)  nLinesPassing: N→Rat  := λn:N.∑i=1
|L| if(n∈Ni, 1,0)   

(a function for calculating the number of lines passing a stage) 

(8)  centreness: N→Rat  :=λn:N.if(nLinesPassing(n)>Q95%),1,0) 
  (a function for central nodes) 

The second step is to estimate traffic pressure in the transport network as a function of logical 
network distance from central nodes. The network distance between all nodes can be calculated by 
using reachability matrices. These can be derived from the adjacency matrix of the generalised 
connectivity graph. A matrix can be notated as 3-valued relation. Let A:N×N→Rat be the adjacency 
matrix of Gm, so that A(i,j) =1 iff node i and node j are connected by an edge, and and 0 otherwise. 
Then the reachability matrix of pathlength k, with k ∈{1,…,n}, is given by raising A to the power of 
k by matrix multiplication. For the set of reachability matrices we write {A1, …An}. The maximum 
pathlength in our approach was n=6, so that A6(i,j) =1 means that nodes i and j are path connected by 
6 edges. Then the distance matrix of maximum pathlength n is a matrix of the minimum pathlengths 
in all reachability matrices 1 to n: 

(9)  Dn :Nm×Nm×Rat  
   :={(i,j,MINk=1

n(if(Ak(i,j)>0,k, if(i≠j,n+1,0)))|i,j∈Nm}  
 (a logical distance matrix giving the path-distances between all nodes  
  with maximum pathlength n) 

This distance measure from central nodes can be squared and inverted in order to give a 
normalised ‘proximity’ between 0 and 1, so that unconnected nodes have proximity 0 and nodes with 
distance 0 have proximity 1: 

(10)  proxn :Nm×Nm→Rat 
    :=λi:Nm, j:Nm.if(Dn(i,j)=0, 1, if(Dn(i,j)= (n+1), 0, 1/(Dn(i,j))2)) 

 Then an ‘external network influence’ for a node is just the maximum product of centreness and 
proximity for all combinations with all other nodes of the network. This means that nodes are being 
influenced if at least one centre is close. All nodes that are not at least n edges away from a center 
have an influence of 0. Nodes are increasingly influenced by a center in a quadratic manner. 

(11) ext_influencen : Nm→Rat  
   :=λi:Nm.MAXj=0

|Nm|-1if(i≠j,centreness(list(Nm)[j])*proxn(i,list(Nm)[j]),0) 
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Spatial operator for the attractiveness of stops 
 

Passenger traffic emerging in a network is also a result of network external factors. Because these 
factors often depend on the geographic neighbourhood of the network, its spatial embedding is also 
relevant to modelling. The geographic neighbourhood can be seen as the source or sink of traffic. In 
the proximity of sources and sinks, traffic pressure normally is increasing because they are common 
starting or end points for many individual trips.  

Network external traffic sources and sinks can be modelled from several kinds of POI using their 
spatial densities, that is their numbers inside of a spatial radius around stops:  

(12)  POIDensity : Nm×set[POI]×Rat→Rat  
  := λi:Nm, poi_layer:set[POI], radius:Rat.   
    |{poi∈ poi_layer| vectorlength(point(poi)-point(i))<radius}| 

Additionally, a geographic neighbourhood with high density of population is also a candidate for 
traffic source or sink. Therefore, population numbers were taken from a commercial dataset of 
statistics on postal code areas, and were aggregated to densities on community level. For reasons of 
space, this is expressed as a function without any specification: 

  (13) popDensity : Nm → Rat   

 
 
A PREDICTION MODEL AND ITS QUALITY 

 

Several predictive statistical models were fitted to the following feature dataset F. It covers part of 
the public bus transport network in 3 minor german cities (‘Kaiserslautern’, ‘Heidelberg’, ‘Ulm’), 
with ‘pass_freq_day’ being an empirically measured passenger frequency per day for several public 
transport lines and a subset of 781 edges in the network: 

 (14)  F :=  { ((linenumber:Rat), (e:E), (pass_freq_day:Rat),  
    frequency(SCHlistm[linenumber], #1(e)),  
    nStops(#1(e)), ext_influence6(#1(e)),  
    centreness(#1(e)),  
    pop_Density(#1(e)),  
    POIDensity(#1(e), Tourism:set[POI], 2000), 
    …)  
   | linenumber ∈ L ∧ e ∈ Elinenumber } 
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Table 3: Distribution parameters of the training set. 
 

The distribution parameters for passenger frequency per day in F are given in table 3. The average 
rounded passenger frequency is 746 passengers per day, and the rounded standard deviation is 855 
passengers. The first model for this dataset is the following simple linear regression. It was generated 
using the linear regression algorithm of WEKA1 (using the Akaike criterion for model selection, 
Witten (2005)): 

(15)  pass_freq_day  
   :=  2.59 * frequency(SCHlistm[linenumber], #1(e)) + 
    -0.27 * nStops(#1(e)) + 
    8.41 * ext_influence6(#1(e)) + 
    0.33 * pop_Density(#1(e)) + 
    -13.07 * POIDensity (#1(e), Culture:set[POI], 2000) + 
    26.18 * POIDensity (#1(e), Tourism:set[POI], 2000) + 
    -184.54 

The model quality was estimated by 10-fold cross-validation and is shown in table 4. The linear 
regression model has a relative absolute error2 of 59% and a correlation coefficient of 0.75.  

Table 4: Quality parameters by 10-fold cross-validation. 

                                                 
1 A popular machine learning toolbox. 
2 The relative absolute error is calculated by dividing the sum of absolute differences between 
prediction and test values by the simple predictor error, which ist the sum of absolute differences 
between the test values and their average.  

 
Distribution 
parameters 

 
bus passenger 

frequency per day 
 

Mean 
 

745.61 

Standard  
deviation 

855 

Minimum 
 

0  

Maximum 
 

4774 

Total number of 
measurements 

781 

 
Quality parameters 

 
Univariate Linear 

Regression 

 
Linear regression 

 
M5’ model 

tree 

M5’ model 
tree (without 
9% outliers) 

Correlation 
coefficient 

0.69 0.75 0.84 0.91 

Mean absolute  
error 

414.36 360.25 300.05 206.55 

Relative absolute 
error 

68.19 % 59.28 % 49.38 % 39.61 % 
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A better quality can be reached fitting a M5’ linear model tree (Wang 1997) in WEKA. Here, the 
relative absolute error is 49% and the correlation coefficient is 0.83 (compare table 4 and figure 1). 
The absolute error, 300 passengers per day, is small compared with the standard error of the variable 
distribution, which is 855 passengers per day.  

As can be seen in figure 1, which visualises the prediction errors by residuals, the M5’ model has 
a good fit for the majority of values, but there are several distinct outliers with very strong deviation, 
which obviously is hard to fit. If the 9% strongest outliers are being removed, then the M5’ model 
quality increases very significantly, reaching a correlation coefficient of more than 0.9. An estimation 
bias is not indicated by these results, because the mean error (average difference between predictions 
and test values) is 14 passengers, which can be considered near 0.  

 

Figure 1: Prediction errors of the fitted M5’ model tree. Larger crosses mean larger errors. The X 
axis shows predictions, the Y axis shows test values of passenger frequencies per day. 

 
 

CONCLUSION 

In order to extrapolate a sample of representative passenger counts for an existent public transport 
network infrastructure, an inductive method based on network characteristics and geographical 
neighbourhood was proposed. The most important predictors for this method can directly be deduced 
from a logical model of the spatial transport network, e.g. passage frequency of a public transport line 
and external influence of traffic pressure according to the network structure.  
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Passage frequency alone can explain up to ½ of the traffic variance of a line (compare univariate 
linear regression in table 4). A M5’ model of all features instead can explain more than 70% of the 
traffic variance, with a relative absolute error less then half of the error of a simple mean prediction. 
Furthermore, and in contrast to many deductive forecasting methods, the estimation is not biased. 
Nevertheless, there are some obvious outliers, which can hardly be predicted with this simple model. 
It seems that these outliers exist according to currently unknown statistical influences which are still 
uncovered in the current feature set. Future efforts should try to incorporate them into the method. If 
this is not possible, perhaps the representativeness of the chosen sample of measurements should be 
further analysed. Furthermore, a direct comparison to deductive traffic forecasting methods should be 
done and discussed using a comparable dataset. 
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